1 |
Using coupled atmospheric-unsaturated zone model to quantify groundwater recharge to the Table Mountain Group Aquifer system, George, South AfricaTuswa, Nangamso January 2019 (has links)
>Magister Scientiae - MSc / The current study aimed at providing groundwater recharge estimates in a fractured rock aquifer environment that is occupied by pine plantation and indigenous forests in order to improve the understanding of the effect of pine plantation forests on recharge. This was based on the argument that for the trees to affect recharge, they do not necessarily need to tap directly from the saturated zone, as vegetation may indirectly affect groundwater recharge by interception and abstracting the infiltrating water in the vadose zone before reaching the water table. The study was conducted along the Southern Cape coastline of Western Cape Province in South Africa. This area is 7 km east of George in an area characterized by the occurrence of the Table Mountain Group aquifer. The research presented in this thesis formed part of a Water Research Commission (WRC) project titled “The Impacts of Commercial Plantation Forests on Groundwater Recharge and Streamflow”. To achieve the aim of the current study, three objectives were formulated: i) to characterize the dominantly occurring recharge mechanism ii) to determine long-term groundwater recharge estimates, and iii) to assess the effect of plantation forests on groundwater recharge. As part of characterizing the dominant recharge mechanism in the area, a conceptual groundwater recharge model of the area was developed to explain the recharge mechanism and facilitate an improved understanding of recharge estimates. The model was based on a theoretical understanding and previous investigations conducted in the study area. Methods such as environmental stable isotopes and hydrochemistry were used to refine the conceptual model by identifying the source of recharge and the dominant recharge mechanism. The occurrence and density of lineaments were used as a proxy to delineate potential recharge zones in the area. Recharge was estimated using the Rainfall Infiltration Breakthrough (RIB) and the Chloride Mass Balance (CMB) methods. Additionally, the effect of plantation forests on recharge was assessed using the HYDRUS-2D numerical model. The recharge estimates derived from the RIB and CMB techniques were verified using the published maps by Vegter (1995).
|
2 |
Effect Of Rainfall Events On The Thermal And Moisture Exposure Of Underground Electric CablesFuhrmann, Andrew 01 January 2015 (has links)
Cable ampacity analysis is generally performed assuming constant worst-state environmental conditions, which often correspond to a dry soil condition or to a condition with uniform ambient soil moisture content. The characteristic time scale of thermal variation in the soil is large, on the order of several weeks, and is similar to the time scale between rainfall events in many geographic locations. Intermittent rainfall events introduce significant transient fluctuations that influence the thermal conditions and moisture content around a buried cable both by increasing thermal conductivity of the soil and by increasing the moisture exposure of the cable insulation. This paper reports on a computational study of the effect of rainfall events on the thermal and moisture transients surrounding a buried cable. The computations were performed with a finite-difference method using an overset grid approach, with an inner polar grid surrounding the cable and an outer Cartesian grid. The thermal and moisture transients observed in computations with periodic rainfall events were compared to control computations with a steady uniform rainfall. Under periodic rainfall conditions, the temperature and moisture fields are observed to approach a limit-cycle condition in which the cable surface temperature and moisture content oscillate in time, but with mean values that are significantly different than the steady-state values.
|
3 |
Analysis of ground-source heat pumps in north-of-England homesAli, Alexis, Mohamed, Mostafa H.A., Abdel-Aal, Mohamad, Schellart, A., Tait, Simon J. 09 June 2016 (has links)
Yes / The performance of Ground Source Heat Pump (GSHP) systems for domestic use is an increasing area of study in the UK. This paper examines the thermal performance of three bespoke shallow horizontal GSHP systems installed in newly built residential houses in the North of England against a control house which was fitted with a standard gas boiler. A total of 350 metres of High Density Polyethylene pipe with an external diameter of 40 mm was used for each house as a heat pump loop. The study investigated (i) the performance of a single loop horizontal Ground Heat Exchanger (GHE) against a double loop GHE and (ii) rainfall effects on heat extraction by comparing a system with an infiltration trench connected to roof drainage against a system without an infiltration trench above the ground loops. Parameters monitored for a full year from October 2013 to September 2014. Using the double GHE has shown an enhanced performance of up to 20% compared with single GHE. The infiltration trench is found to improve performance of the heat pumps; the double loop GHE system with an infiltration trench had a COP 5% higher than that of the double loop GHE system without a trench.
|
Page generated in 0.1413 seconds