Spelling suggestions: "subject:"random dopant fluctuations""
1 |
Advanced TCAD Simulations and Characterization of Semiconductor DevicesEwert, Tony January 2006 (has links)
<p>Today, micro- and nano-electronic devices are becoming more complex and advanced as the dimensions are shrinking. It is therefore a very challenging task to develop new device technologies with performance that can be predicted. This thesis focuses on advanced measurement techniques and TCAD simulations in order to characterize and understand the device physics of advanced semiconductor devices. </p><p>TCAD simulations were made on a novel MOSFET device with asymmetric source and drain structures. The results showed that there exists an optimum range of implantation doses where the device has a significantly higher figure-of-merit regarding speed and voltage capability, compared to a symmetric MOSFET. Furthermore, both 2D and 3D simulations were used to develop a resistive model of the substrate noise coupling. </p><p>Of particular interest to this thesis is the random dopant fluctuation (RDF). The result of RDF can be characterized using very advance and reliable measurement techniques. In the thesis an ultra-high precision parametric mismatch measurement system was designed and implemented. The best ever reported performance on short-term repeatability of the measurements was demonstrated. A new bipolar parametric mismatch phenomenon was also revealed using the measurement system.</p><p>A complete simulation platform, called SiSPET (Simulated Statistical Parameter Extraction Tool), was developed and integrated into the framework of a commercial TCAD environment. A special program for randomization of the doping was developed and proven to provide RDF effects in agreement measurement. The SiSPET system was used to investigate how different device models were able to take RDF effects into account. The RDF effects were translated in to parameter fluctuations using the developed extraction routines. It was shown that the basic MOSFET fluctuation model could be improved by including the field dependenent mobility. However, if a precise description of the fluctuations is required an advanced compact-model, such as MOS Model 11 should be used.</p>
|
2 |
Advanced TCAD Simulations and Characterization of Semiconductor DevicesEwert, Tony January 2006 (has links)
Today, micro- and nano-electronic devices are becoming more complex and advanced as the dimensions are shrinking. It is therefore a very challenging task to develop new device technologies with performance that can be predicted. This thesis focuses on advanced measurement techniques and TCAD simulations in order to characterize and understand the device physics of advanced semiconductor devices. TCAD simulations were made on a novel MOSFET device with asymmetric source and drain structures. The results showed that there exists an optimum range of implantation doses where the device has a significantly higher figure-of-merit regarding speed and voltage capability, compared to a symmetric MOSFET. Furthermore, both 2D and 3D simulations were used to develop a resistive model of the substrate noise coupling. Of particular interest to this thesis is the random dopant fluctuation (RDF). The result of RDF can be characterized using very advance and reliable measurement techniques. In the thesis an ultra-high precision parametric mismatch measurement system was designed and implemented. The best ever reported performance on short-term repeatability of the measurements was demonstrated. A new bipolar parametric mismatch phenomenon was also revealed using the measurement system. A complete simulation platform, called SiSPET (Simulated Statistical Parameter Extraction Tool), was developed and integrated into the framework of a commercial TCAD environment. A special program for randomization of the doping was developed and proven to provide RDF effects in agreement measurement. The SiSPET system was used to investigate how different device models were able to take RDF effects into account. The RDF effects were translated in to parameter fluctuations using the developed extraction routines. It was shown that the basic MOSFET fluctuation model could be improved by including the field dependenent mobility. However, if a precise description of the fluctuations is required an advanced compact-model, such as MOS Model 11 should be used.
|
3 |
Modeling Random Dopant Fluctuation Effects in Nanoscale Tri-gate FETsOgden, Joshua Lee 01 December 2011 (has links)
The tri-gate FET has been hailed as the biggest breakthrough in transistor technology in the last 20 years. The increase in device performance (faster switching, less delay, improved short channel effects, etc.) coupled with the reduction in device size, would allow for huge gains in the electronics industry. This thesis aims to not only investigate the validity of these claims, but also how random dopant fluctuation (RDF) affects the tri-gates performance and how to curb these issues. In order to achieve this, an atomistic 3-D device simulation program was utilized in order to capture the many quantum mechanical effects that devices of this size experience and compare the results against a similar planar device. We see the tri-gate FET does indeed perform extremely well compared to its planar counterpart, but both devices experience a great deal of fluctuations due to the random dopants in the device. In order to limit the RDF effects a variety of methods were implemented including increasing doping concentrations in the channel, source, and drain regions, varying the source/drain junction depths, and varying the source/drain contact workfunction. The results showed that increasing doping concentrations in order to reduce the amount of space the dopants had to diffuse did not reduce the randomness experienced by the devices, but rather the randomness increased. The dopant fluctuation was insensitive to the varying of the workfunction, but was found to decrease with an increase in junction depth in the source/drain regions. With randomness in the tri-gate reduced, the overall performance should increase when used in ICs, where consistency in device characteristics is essential.
|
Page generated in 0.1488 seconds