• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Asymptotic Behavior of Randomly Perturbed Dynamical Systems

Kolomiyets, Yuriy V. 27 November 2006 (has links)
No description available.
2

Schwellwert für die Lösbarkeit von zufälligen Gleichungssystemen über Z3 / Satisfiability Threshold of Random Equations over Z3

Falke, Lutz 21 December 2015 (has links) (PDF)
Behandelt werden zufällige lineare Gleichungssysteme modulo 3, wobei in jeder Gleichung genau k Variablen vorkommen. Es wird gezeigt, dass der Schwellwert der Lösbarkeit solcher Gleichungssysteme bei der 2-Kern-Dichte von 1 liegt. Das Resultat ist eine Verallgemeinerung bereits bekannter Resultate für den modulo 2 Fall. Dabei entsteht der 2-Kern dadurch, dass wir alle Variablen mit nur einem Vorkommen löschen. Die Dichte ist definiert als der Quotient der Anzahl der Gleichungen durch die Anzahl der Variablen. Im Rückblick ist dieses Resultat ein natürlicher Schwellwert und die Vermutung liegt nahe, dass er bei analogen Situationen über anderen Strukturen als Z3 auch gelten sollte. Allerdings sind schon im modulo 2 Fall die analytischen Probleme nicht gering, und der hier behandelte Fall braucht weitere analytische Einsichten.
3

Schwellwert für die Lösbarkeit von zufälligen Gleichungssystemen über Z3

Falke, Lutz 16 December 2015 (has links)
Behandelt werden zufällige lineare Gleichungssysteme modulo 3, wobei in jeder Gleichung genau k Variablen vorkommen. Es wird gezeigt, dass der Schwellwert der Lösbarkeit solcher Gleichungssysteme bei der 2-Kern-Dichte von 1 liegt. Das Resultat ist eine Verallgemeinerung bereits bekannter Resultate für den modulo 2 Fall. Dabei entsteht der 2-Kern dadurch, dass wir alle Variablen mit nur einem Vorkommen löschen. Die Dichte ist definiert als der Quotient der Anzahl der Gleichungen durch die Anzahl der Variablen. Im Rückblick ist dieses Resultat ein natürlicher Schwellwert und die Vermutung liegt nahe, dass er bei analogen Situationen über anderen Strukturen als Z3 auch gelten sollte. Allerdings sind schon im modulo 2 Fall die analytischen Probleme nicht gering, und der hier behandelte Fall braucht weitere analytische Einsichten.

Page generated in 0.1159 seconds