• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Random Polytopes

Beermann, Mareen 23 June 2015 (has links)
Random polytopes can be constructed in many different ways. In this thesis two certain kinds are considered - random polytopes as the convex hull of random points and as the intersection of finitely many random half spaces. Concerning these two models different issues are treated.
2

Random Geometric Structures

Grygierek, Jens Jan 30 January 2020 (has links)
We construct and investigate random geometric structures that are based on a homogeneous Poisson point process. We investigate the random Vietoris-Rips complex constructed as the clique complex of the well known gilbert graph as an infinite random simplicial complex and prove that every realizable finite sub-complex will occur infinitely many times almost sure as isolated complex and also in the case of percolations connected to the unique giant component. Similar results are derived for the Cech complex. We derive limit theorems for the f-vector of the Vietoris-Rips complex on the unit cube centered at the origin and provide a central limit theorem and a Poisson limit theorem based on the model parameters. Finally we investigate random polytopes that are given as convex hulls of a Poisson point process in a smooth convex body. We establish a central limit theorem for certain linear combinations of intrinsic volumes. A multivariate limit theorem involving the sequence of intrinsic volumes and the number of i-dimensional faces is derived. We derive the asymptotic normality of the oracle estimator of minimal variance for estimation of the volume of a convex body.

Page generated in 0.068 seconds