1 |
Rational redesign of Candida antarctica lipase BMagnusson, Anders January 2005 (has links)
This thesis describes the use of rational redesign to modify the properties of the enzyme Candida antarctica lipase B. Through carefully selected single-point mutations, we were able to introduce substrate-assisted catalysis and to alter the reaction specificity. Other single-point mutations afforded variants with greatly changed substrate selectivity and enantioselectivity. Mutation of the catalytic serine changed the hydrolase activity into an aldolase activity. The mutation decreased the activation energy for aldol addition by 4 kJ×mol-1, while the activation energy increased so much for hydrolysis that no hydrolysis activity could be detected. This mutant can catalyze aldol additions that no natural aldolases can catalyze. Mutation of the threonine in the oxyanion hole proved the great importance of its hydroxyl group in the transition-state stabilization. The lost transition-state stabilization was partly replaced through substrate-assisted catalysis with substrates carrying a hydroxyl group. The poor selectivity of the wild-type lipase for ethyl 2-hydroxypropanoate (E=1.6) was greatly improved in the mutant (E=22), since only one enantiomer could perform substrate-assisted catalysis. The redesign of the size of the stereospecificity pocket was very successful. Mutation of the tryptophan at the bottom of this pocket removed steric interactions with secondary alcohols that have to position a substituent larger than an ethyl in this pocket. This mutation increased the activity 5 500 times towards 5-nonanol and 130 000 times towards (S)-1-phenylethanol. The acceptance of such large substituents (butyl and phenyl) in the redesigned stereospecificity pocket increases the utility of lipases in biocatalysis. The improved activity with (S)-1-phenylethanol strongly contributed to the 8 300 000 times change in enantioselectivity towards 1-phenylethanol; example of such a large change was not found in the literature. The S-selectivity of the mutant is unique for lipases. Its enantioselectivity increases strongly with temperature reaching a useful S-selectivity (E=44) at 69 °C. Thermodynamics analysis of the enantioselectivity showed that the mutation in the stereospecificity pocket mainly changed the entropic term, while the enthalpic term was only slightly affected. This pinpoints the importance of entropy in enzyme catalysis and entropy should not be neglected in rational redesign.
|
2 |
Modulating Enzyme Functions by Semi-Rational Redesign and Chemical Modifications : A Study on Mu-class Glutathione TransferasesNorrgård, Malena A January 2011 (has links)
Today, enzymes are extensively used for many industrial applications, this includes bulk and fine-chemical synthesis, pharmaceuticals and consumer products. Though Nature has perfected enzymes for many millions of years, they seldom reach industrial performance targets. Natural enzymes could benefit from protein redesign experiments to gain novel functions or optimize existing functions. Glutathione transferases (GSTs) are detoxification enzymes, they also display disparate functions. Two Mu-class GSTs, M1-1 and M2-2, are closely related but display dissimilar substrate selectivity profiles. Saturation mutagenesis of a previously recognized hypervariable amino acid in GST M2-2, generated twenty enzyme variants with altered substrate selectivity profiles, as well as modified thermostabilities and expressivities. This indicates an evolutionary significance; GST Mu-class enzymes could easily alter functions in a duplicate gene by a single-point mutation. To further identify residues responsible for substrate selectivity in the GST M2-2 active site, three residues were chosen for iterative saturation mutagenesis. Mutations in position10, identified as highly conserved, rendered enzyme variants with substrate selectivity profiles resembling that of specialist enzymes. Ile10 could be conserved to sustain the broad substrate acceptance displayed by GST Mu-class enzymes. Enzymes are constructed from primarily twenty amino acids, it is a reasonable assumption that expansion of the amino acid repertoire could result in functional properties that cannot be accomplished with the natural set of building blocks. A combination approach of site-directed mutagenesis and chemical modifications in GST M2-2 and GST M1-1 resulted in novel enzyme variants that displayed altered substrate selectivity patterns as well as improved enantioselectivities. The results presented in this thesis demonstrate the use of different protein redesign techniques to modulate various functions in Mu-class GSTs. These techniques could be useful in search of optimized enzyme variants for industrial targets. / biokemi och organisk kemi
|
Page generated in 0.1074 seconds