Spelling suggestions: "subject:"raumartigen unendliche"" "subject:"raumartigen unendlichen""
1 |
Asymptotic staticity and tensor decompositions with fast decay conditionsAvila, Gastón January 2011 (has links)
Corvino, Corvino and Schoen, Chruściel and Delay have shown the existence of a large class of asymptotically flat vacuum initial data for Einstein's field equations which are static or stationary in a neighborhood of space-like infinity, yet quite general in the interior. The proof relies on some abstract, non-constructive arguments which makes it difficult to calculate such data numerically by using similar arguments.
A quasilinear elliptic system of equations is presented of which we expect that it can be used to construct vacuum initial data which are asymptotically flat, time-reflection symmetric, and asymptotic to static data up to a prescribed order at space-like infinity. A perturbation argument is used to show the existence of solutions. It is valid when the order at which the solutions approach staticity is restricted to a certain range.
Difficulties appear when trying to improve this result to show the existence of solutions that are asymptotically static at higher order. The problems arise from the lack of surjectivity of a certain operator.
Some tensor decompositions in asymptotically flat manifolds exhibit some of the difficulties encountered above. The Helmholtz decomposition, which plays a role in the preparation of initial data for the Maxwell equations, is discussed as a model problem. A method to circumvent the difficulties that arise when fast decay rates are required is discussed. This is done in a way that opens the possibility to perform numerical computations.
The insights from the analysis of the Helmholtz decomposition are applied to the York decomposition, which is related to that part of the quasilinear system which gives rise to the difficulties. For this decomposition analogous results are obtained. It turns out, however, that in this case the presence of symmetries of the underlying metric leads to certain complications. The question, whether the results obtained so far can be used again to show by a perturbation argument the existence of vacuum initial data which approach static solutions at infinity at any given order, thus remains open. The answer requires further analysis and perhaps new methods. / Corvino, Corvino und Schoen als auch Chruściel und Delay haben die Existenz einer grossen Klasse asymptotisch flacher Anfangsdaten für Einsteins Vakuumfeldgleichungen gezeigt, die in einer Umgebung des raumartig Unendlichen statisch oder stationär aber im Inneren der Anfangshyperfläche sehr allgemein sind. Der Beweis beruht zum Teil auf abstrakten, nicht konstruktiven Argumenten, die Schwierigkeiten bereiten, wenn derartige Daten numerisch berechnet werden sollen.
In der Arbeit wird ein quasilineares elliptisches Gleichungssystem vorgestellt, von dem wir annehmen, dass es geeignet ist, asymptotisch flache Vakuumanfangsdaten zu berechnen, die zeitreflektionssymmetrisch sind und im raumartig Unendlichen in einer vorgeschriebenen Ordnung asymptotisch zu statischen Daten sind. Mit einem Störungsargument wird ein Existenzsatz bewiesen, der gilt, solange die Ordnung, in welcher die Lösungen asymptotisch statische Lösungen approximieren, in einem gewissen eingeschränkten Bereich liegt.
Versucht man, den Gültigkeitsbereich des Satzes zu erweitern, treten Schwierigkeiten auf. Diese hängen damit zusammen, dass ein gewisser Operator nicht mehr surjektiv ist.
In einigen Tensorzerlegungen auf asymptotisch flachen Räumen treten ähnliche Probleme auf, wie die oben erwähnten. Die Helmholtzzerlegung, die bei der Bereitstellung von Anfangsdaten für die Maxwellgleichungen eine Rolle spielt, wird als ein Modellfall diskutiert. Es wird eine Methode angegeben, die es erlaubt, die Schwierigkeiten zu umgehen, die auftreten, wenn ein schnelles Abfallverhalten des gesuchten Vektorfeldes im raumartig Unendlichen gefordert wird. Diese Methode gestattet es, solche Felder auch numerisch zu berechnen. Die Einsichten aus der Analyse der Helmholtzzerlegung werden dann auf die Yorkzerlegung angewandt, die in den Teil des quasilinearen Systems eingeht, der Anlass zu den genannten Schwierigkeiten gibt. Für diese Zerlegung ergeben sich analoge Resultate. Es treten allerdings Schwierigkeiten auf, wenn die zu Grunde liegende Metrik Symmetrien aufweist. Die Frage, ob die Ergebnisse, die soweit erhalten wurden, in einem Störungsargument verwendet werden können um die Existenz von Vakuumdaten zu zeigen, die im räumlich Unendlichen in jeder Ordnung statische Daten approximieren, bleibt daher offen. Die Antwort erfordert eine weitergehende Untersuchung und möglicherweise auch neue Methoden.
|
Page generated in 0.345 seconds