1 |
Analyse temps-fréquence des données de rayonnement solaire reçu au sol / Time-frequency analysis of surface solar radiation dataBengulescu, Marc 12 July 2017 (has links)
Cette thèse traite de la variabilité temporelle intrinsèque de l'éclairement solaire reçu au sol. Les échelles caractéristiques de variabilité sont mises en évidence par l'analyse de longues séries temporelles de moyennes journalières de l'éclairement, pour différents endroits du monde, issues de mesures pyranométriques au sol, d'estimations satellitaires ou de réanalyses météorologiques .Compte-tenu de la nature non linéaire et non stationnaire des données, la transformée adaptative de Hilbert-Huang est utilisée comme outil d'analyse pour tenir compte de la diversité de ces échelles temporelles. On montre ainsi la nature variable des échelles caractéristiques et de leur intensité, ainsi que leur dépendance vis-à-vis du climat.L'application d'une technique adaptative de ré-échantillonnage fractionnaire montre la juxtaposition d'une composante déterministe et d'une stochastique. Pour tous les jeux de données, le cycle annuel déterministe représente la plus grande partie de la variabilité. Toutes les séries temporelle contiennent une composante de variabilité stochastique à haute fréquence, qui est modulée en amplitude par le cycle annuel.L'approche permet également d'évaluer, échelle par échelle, les performances des estimations satellitaires ou issues de ré-analyses par comparaison avec des mesures pyranométriques au sol. Une étude de cas confirme que les estimations satellitaires surpassent les ré-analyses à toutes les échelles temporelles. / The center of focus for this PhD thesis is the intrinsic temporal variability of the surface solar irradiance (SSI). The characteristic time-scales of variability are revealed by analysing long-term time-series of daily means of SSI, such as ground measurements, satellite estimates, or radiation products from global atmospheric re-analyses, for different geographical locations around the world.To account for the wide range of the time-scales of variability, and given the non-linear and non-stationary nature of the data, the adaptive, data-driven Hilbert-Huang Transform is employed as an analysis tool. The time-varying nature of the characteristic time-scales of variability, along with variations in intensity, are thus revealed.An adaptive fractional re-sampling technique is used to discriminate between the deterministic and the stochastic variability constituents. For all datasets, the deterministic yearly cycle is found to account for the largest part of variability. Furthermore, all time-series are found to contain a high-frequency stochastic variability component, that exhibit cross-scale amplitude modulation by the yearly cycle.A refinement to existing methods for assessing the fitness for use of surrogate SSI products in lieu of ground measurements is also proposed. A case study confirms that satellite estimates outperform re-analyses across all time-scales.
|
2 |
Link Quality in Wireless Sensor Networks / Qualité des liens dans les réseaux de capteurs sans fil : Conception de métriques de qualité de lien pour réseaux de capteurs sans fil en intérieur et à large échelleBildea, Ana 19 November 2013 (has links)
L'objectif de la thèse est d'étudier la variation temporelle de la qualité des liens dans les réseaux de capteurs sans fil à grande échelle, de concevoir des estimateurs permettant la différenciation, à court terme et long terme, entre liens de qualité hétérogène. Tout d'abord, nous étudions les caractéristiques de deux paramètres de la couche physique: RSSI (l'indicateur de puissance du signal reçu) et LQI (l'indicateur de la qualité de liaison) sur SensLab, une plateforme expérimentale de réseau de capteurs à grande échelle situé à l'intérieur de bâtiments. Nous observons que le RSSI et le LQI permettent de discriminer des liens de différentes qualités. Ensuite, pour obtenir un estimateur de PRR, nous avons approximé le diagramme de dispersion de la moyenne et de l'écart-type du LQI et RSSI par une fonction Fermi-Dirac. La fonction nous permet de trouver le PRR à partir d'un niveau donné de LQI. Nous avons évalué l'estimateur en calculant le PRR sur des fenêtres de tailles variables et en le comparant aux valeurs obtenues avec l'estimateur. Par ailleurs, nous montrons en utilisant le modèle de Gilbert-Elliot (chaîne de Markov à deux états) que la corrélation des pertes de paquets dépend de la catégorie de lien. Le modèle permet de distinguer avec précision les différentes qualités des liens, en se basant sur les probabilités de transition dérivées de la moyenne et de l'écart-type du LQI. Enfin, nous proposons un modèle de routage basé sur la qualité de lien déduite de la fonction de Fermi-Dirac approximant le PRR et du modèle Markov Gilbert-Elliot à deux états. Notre modèle est capable de distinguer avec précision les différentes catégories de liens ainsi que les liens fortement variables. / The goal of the thesis is to investigate the issues related to the temporal link quality variation in large scale WSN environments, to design energy efficient link quality estimators able to distinguish among links with different quality on a short and a long term. First, we investigate the characteristics of two physical layer metrics: RSSI (Received Signal Strength Indication) and LQI (Link Quality Indication) on SensLAB, an indoor large scale wireless sensor network testbed. We observe that RSSI and LQI have distinct values that can discriminate the quality of links. Second, to obtain an estimator of PRR, we have fitted a Fermi-Dirac function to the scatter diagram of the average and standard variation of LQI and RSSI. The function enables us to find PRR for a given level of LQI. We evaluate the estimator by computing PRR over a varying size window of transmissions and comparing with the estimator. Furthermore, we show using the Gilbert-Elliot two-state Markov model that the correlation of packet losses and successful receptions depend on the link category. The model allows to accurately distinguish among strongly varying intermediate links based on transition probabilities derived from the average and the standard variation of LQI. Finally, we propose a link quality routing model driven from the F-D fitting functions and the Markov model able to discriminate accurately link categories as well as high variable links.
|
Page generated in 0.0289 seconds