• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • 1
  • Tagged with
  • 18
  • 18
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conceptual design for a re-entrant type fuel channel for supercritical water-cooled nuclear reactors

Samuel, Jeffrey 01 April 2011 (has links)
Current CANDU-type nuclear reactors use a once-through fuel-channel with an annulus gas insulating it from the moderator. The current reference design for a CANDU-type SuperCritical Water-Cooled Reactor (SCWR) is to eliminate the annulus gap and use a ceramic insert to insulate the coolant from the moderator. While such a design may work, alternative fuel-channel design concepts are under development to explore the optimum efficiency of SCWRs. One such alternative approach is called the Re-Entrant fuel-channel. The Re-Entrant fuel-channel consists of three tubes, the inner tube (flow tube), pressure tube and an outer tube. The fuel bundles are placed in the inner tube. An annulus is formed between the flow and pressure tubes, through which the primary coolant flows. A ceramic insulator is placed between the pressure tube and the outer tube. The coolant flows through the annulus receiving heat from the inner tube from one end of the channel to another. At the far end, the flow will reverse direction and enter the inner tube, and hence the fuel-string. At the inlet, the temperature is 350°C for a high-pressure coolant (pressure of 25 MPa), which is just below the pseudocritical point. At the outlet, the temperature is about 625ºC at the same pressure (the pressure drop is small and can be neglected). The objective of this work was to design the Re-Entrant channel and to estimate the heat loss to the moderator for the proposed new fuel-channel design. A numerical model was developed and MATLAB was used to calculate the heat loss from the insulated Re-Entrant fuel-channel along with the temperature profiles and the heat transfer coefficients for a given set of flow, pressure, temperature and power boundary conditions. Thermophysical properties were obtained from NIST REFPROP software. With the results from the numerical model, the design of the Re-Entrant fuelchannel was optimized to improve its efficiency / UOIT
2

HIGH Tc SUPERCONDUCTOR RE-ENTRANT CAVITY FILTER STRUCTURES

PANDIT, HIMANSHU RAMESH 02 September 2003 (has links)
No description available.
3

Behavior and Strength of Simple and Continuous Span Re-Entrant Composite Slabs

Traver, Thomas Mathew 01 August 2002 (has links)
This study investigates the further development of the commercially available re-entrant steel deck profile. The effects of various embossments and continuous construction are investigated through three Series of composite slab load tests. The test specimens in this study were constructed to simulate actual field construction of composite slabs as part of reinforced concrete structures. The results of this experimental study are analyzed using methods given in the ASCE Standard for the Structural Design of Composite Slabs. Recommended design procedures for the improved re-entrant profile are given and various future profile modifications are suggested. / Master of Science
4

FLUORINATED RASPBERRY-LIKE PARTICLES FOR SUPERAMPHIPHOBIC COATINGS

Jiang, WEIJIE 21 October 2013 (has links)
Raspberry-like polystyrene particles were fabricated through the covalent linkage of small epoxy-functionalized polystyrene particles (PS-GMA) with large amino-functionalized polystyrene particles (PS-NH2). These covalent bonds yielded more stable and robust particle clusters than would be anticipated from non-covalent interactions. While the structures of these raspberry-like particles provided them with a dual-scale hierarchical roughness and re-entrant sites, they were further functionalized with a fluorinated random copolymer to provide them a low surface tension. The fluorinated random copolymer used to functionalize these raspberry-like particles was poly(glycidyl methacrylate20%)-co-2(perfluorooctyl)ethyl methacrylate80%)25 or P(GMA20%-co-FOEMA80%)25, where the subscript 25 denotes the total number of the respective GMA and FOEMA units, while the subscript 20% and 80% denote the molar fractions of GMA and FOEMA, respectively. The epoxy groups of the GMA units could react with the amino groups of the raspberry-like particles, thus incorporating the fluorinated polymer onto the surfaces of the raspberry-like particles. In addition, the FOEMA component provided the particles with enhanced amphiphobicity. Subsequently, these fluorinated raspberry-like particles were cast onto glass slides to demonstrate their superamphiphobic properties. These coatings exhibited superhydrophobic behavior when they were tested against water droplets. Additionally, the oil-repellency of these coatings was tested against various liquids, including diiodomethane, cooking oil, and hexadecane. The coatings exhibited superoleophobic behavior against diiodomethane and cooking oil, as well as highly oleophobic behavior against hexadecane. This work demonstrates a simple and efficient route for the fabrication of superamphiphobic surfaces. Additionally, these surfaces are among the first examples of coatings prepared via self-assembly techniques that exhibited high repellency against hexadecane. These materials could have potential in various applications that require protection of a surface against wetting by either water or oils. / Thesis (Master, Chemistry) -- Queen's University, 2013-10-18 12:36:39.039
5

Viscoelastic flows of PTT fluid

Sibley, David N. January 2010 (has links)
No description available.
6

Cyclic Scheduling and Re-scheduling in Response to Change of Product Mix

Hino, Rei, Kataoka, Ryosuke January 2010 (has links)
No description available.
7

APPROXIMATE ANALYSIS OF RE-ENTRANT LINES WITH BERNOULLI RELIABILITY MODELS

Wang, Chong 01 January 2007 (has links)
Re-entrant lines are widely used in many manufacturing systems, such as semiconductor, electronics, etc. However, the performance analysis of re-entrant lines is largely unexplored due to its complexity. In this thesis, we present iterative procedures to approximate the production rate of re-entrant lines with Bernoulli reliability of machines. The convergence of the algorithms, uniqueness of the solution, and structural properties, have been proved analytically. The accuracy of the procedures is investigated numerically. It is shown that the approaches developed can either provide a lower bound or a closed estimate of the system production rate. Finally, a case study of automotive ignition component line with re-entrant washing operations is introduced to illustrate the applicability of the method. The results of this study suggest a possible route for modeling and analysis of re-entrant systems.
8

Makespan Minimization in Re-entrant Permutation Flow Shops

Hinze, Richard 09 April 2018 (has links) (PDF)
Re-entrant permutation flow shop problems occur in practical applications such as wafer manufacturing, paint shops, mold and die processes and textile industry. A re-entrant material flow means that the production jobs need to visit at least one working station multiple times. A comprehensive review gives an overview of the literature on re-entrant scheduling. The influence of missing operations received just little attention so far and splitting the jobs into sublots was not examined in re-entrant permutation flow shops before. The computational complexity of makespan minimization in re-entrant permutation flow shop problems requires heuristic solution approaches for large problem sizes. The problem provides promising structural properties for the application of a variable neighborhood search because of the repeated processing of jobs on several machines. Furthermore the different characteristics of lot streaming and their impact on the makespan of a schedule are examined in this thesis and the heuristic solution methods are adjusted to manage the problem’s extension.
9

Optimal and Simulation-Based Approximate Dynamic Programming Approaches for the Control of Re-Entrant Line Manufacturing Models

Ramirez, Jose A. 22 November 2010 (has links)
No description available.
10

Chain Deformation in Entangled Polymer Melts at Re-entrant Corners

Clarke, N.C., De Luca, E., Buxton, G., Hutchings, L.R., Gough, Timothy D., Grillo, I., Graham, R.S., Jagannathan, K., Klein, D.H., McLeish, T.C.B. January 2010 (has links)
No / Using SANS to map the deformation of individual polymer chains in the vicinity of re-entrant corners in a contraction−expansion flow, we show that stress singularities at such corners, predicted by formulations of fluid dynamics that lack a molecular basis, do not cause extreme deformation of the chains. Multiscale modeling based on a nonlinear tube theory incorporating appropriate relaxation processes quantitatively reproduces the observed scattering, thus providing further evidence for the universality of the tube model for polymer flow.

Page generated in 0.0665 seconds