• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Une approche incrémentale pour l’extraction de séquences de franchissement dans un Réseau de Petri Temporisé : application à la reconfiguration des systèmes de production flexibles / An incremental approach for the extraction of firing sequences in Timed Petri Nets : application to the reconfiguration of flexible manufacturing systems

Huang, Yongliang 25 November 2013 (has links)
Cette thèse a pour objectif la génération de séquences de franchissement dans les Réseaux de Petri Temporisés (RdPT) en utilisant une approche incrémentale. Le verrou principal auquel est confronté ce travail est l’explosion combinatoire qui résulte de la construction classique du graphe d’accessibilité du RdPT. Nous proposons d’utiliser la notion de séquence de steps temporisés, afin d’exprimer progressivement l’ensemble des séquences de franchissements permettant de passer d’un état courant à un état cible. La notion de step temporisé correspond à une abstraction logique du comportement du système considéré. Le caractère incrémental de l’approche a pour objectif de gagner en efficacité. En effet, il consiste à exprimer tout nouvel état de la résolution par rapport à une profondeur K+1, en fonction d’un état atteint à la profondeur K. Ainsi, nous proposons plusieurs algorithmes de recherche incrémentale permettant d'améliorer l'efficacité de la résolution des problèmes d'accessibilité. Nous utilisons ensuite la programmation par contraintes pour modéliser le problème de recherche d’accessibilité dans un RdPT et mettre en œuvre notre approche incrémentale. Notre approche permet également d’ajouter des contraintes spécifiques à un contexte de résolution. Nous avons notamment utilisé cette possibilité pour proposer des techniques d'identification des jetons dans un RdPT borné, dans le cadre de la reconfiguration des systèmes manufacturiers. Nous concluons par l’évaluation de différentes applications constituant des « benchmarks » permettant d’illustrer l'efficacité des approches proposées / This PhD thesis is dedicated to the generation of firing sequences in Timed Petri Net (TPN) using an incremental approach. To reduce the influence of the well-known combinatorial explosion issue, a unique sequence of timed steps is introduced to represent implicitly the underlying reachability graph of the TPN, without needing its whole construction. This sequence of timed steps is developed based on the logical abstraction technique. The advantage of the incremental approach is that it can express any state just from the last step information, instead of representing all states before.Several incremental search algorithms are introduced to improve the efficiency of our methodology. Constraint programming techniques are used to model and solve our incremental model, in which search strategies are developed that can search for solutions more efficiently. Our methodology can be used to add specific constraints to model realistic systems. Token identification techniques are developed to handle token confusion issues that appear when addressing the reconfiguration of manufacturing systems. Experimental benchmarks illustrate the effectiveness of approaches proposed in this thesis
2

Algorithmique et complexité des systèmes à compteurs

Blondin, Michael 04 1900 (has links)
Réalisé en cotutelle avec l'École normale supérieure de Cachan – Université Paris-Saclay / L'un des aspects fondamentaux des systèmes informatiques modernes, et en particulier des systèmes critiques, est la possibilité d'exécuter plusieurs processus, partageant des ressources communes, de façon simultanée. De par leur nature concurrentielle, le bon fonctionnement de ces systèmes n'est assuré que lorsque leurs comportements ne dépendent pas d'un ordre d'exécution prédéterminé. En raison de cette caractéristique, il est particulièrement difficile de s'assurer qu'un système concurrent ne possède pas de faille. Dans cette thèse, nous étudions la vérification formelle, une approche algorithmique qui vise à automatiser la vérification du bon fonctionnement de systèmes concurrents en procédant par une abstraction vers des modèles mathématiques. Nous considérons deux de ces modèles, les réseaux de Petri et les systèmes d'addition de vecteurs, et les problèmes de vérification qui leur sont associés. Nous montrons que le problème d'accessibilité pour les systèmes d'addition de vecteurs (avec états) à deux compteurs est PSPACE-complet, c'est-à-dire complet pour la classe des problèmes solubles à l'aide d'une quantité polynomiale de mémoire. Nous établissons ainsi la complexité calculatoire précise de ce problème, répondant à une question demeurée ouverte depuis plus de trente ans. Nous proposons une nouvelle approche au problème de couverture pour les réseaux de Petri, basée sur un algorithme arrière guidé par une caractérisation logique de l'accessibilité dans les réseaux de Petri continus. Cette approche nous a permis de mettre au point un nouvel algorithme qui s'avère particulièrement efficace en pratique, tel que démontré par notre implémentation logicielle nommée QCover. Nous complétons ces résultats par une étude des systèmes de transitions bien structurés qui constituent une abstraction générale des systèmes d'addition de vecteurs et des réseaux de Petri. Nous considérons le cas des systèmes de transitions bien structurés à branchement infini, une classe qui inclut les réseaux de Petri possédant des arcs pouvant consommer ou produire un nombre arbitraire de jetons. Nous développons des outils mathématiques facilitant l'étude de ces systèmes et nous délimitons les frontières au-delà desquelles la décidabilité des problèmes de terminaison, de finitude, de maintenabilité et de couverture est perdue. / One fundamental aspect of computer systems, and in particular of critical systems, is the ability to run simultaneously many processes sharing resources. Such concurrent systems only work correctly when their behaviours are independent of any execution ordering. For this reason, it is particularly difficult to ensure the correctness of concurrent systems. In this thesis, we study formal verification, an algorithmic approach to the verification of concurrent systems based on mathematical modeling. We consider two of the most prominent models, Petri nets and vector addition systems, and their usual verification problems considered in the literature. We show that the reachability problem for vector addition systems (with states) restricted to two counters is PSPACE-complete, that is, it is complete for the class of problems solvable with a polynomial amount of memory. Hence, we establish the precise computational complexity of this problem, left open for more than thirty years. We develop a new approach to the coverability problem for Petri nets which is primarily based on applying forward coverability in continuous Petri nets as a pruning criterion inside a backward coverability framework. We demonstrate the effectiveness of our approach by implementing it in a tool named QCover. We complement these results with a study of well-structured transition systems which form a general abstraction of vector addition systems and Petri nets. We consider infinitely branching well-structured transition systems, a class that includes Petri nets with special transitions that may consume or produce arbitrarily many tokens. We develop mathematical tools in order to study these systems and we delineate the decidability frontier for the termination, boundedness, maintainability and coverability problems.

Page generated in 0.0568 seconds