1 |
High-efficiency Transformerless PV Inverter CircuitsChen, Baifeng 01 October 2015 (has links)
With worldwide growing demand for electric energy, there has been a great interest in exploring photovoltaic (PV) sources. For the PV generation system, the power converter is the most essential part for the efficiency and function performance. In recent years, there have been quite a few new transformerless PV inverters topologies, which eliminate the traditional line frequency transformers to achieve lower cost and higher efficiency, and maintain lower leakage current as well.
With an overview of the state-of-the-art transformerless PV inverters, a new inverter technology is summarized in the Chapter 2, which is named V-NPC inverter technology. Based this V-NPC technology, a family of high efficiency transformerless inverters are proposed and detailly analyzed. The experimental results demonstrate the validity of V-NPC technology and high performance of the transformerless inverters.
For the lower power level transformerless inverters, most of the innovative topologies try to use super junction metal oxide semiconductor field effect transistor(MOSFET) to boost efficiency, but these MOSFET based inverter topologies suffer from one or more of these drawbacks: MOSFET failure risk from body diode reverse recovery, increased conduction losses due to more devices, or low magnetics utilization. By splitting the conventional MOSFET based phase leg with an optimized inductor, Chapter 3 proposes a novel MOSFET based phase leg configuration to minimize these drawbacks. Based on the proposed phase leg configuration, a high efficiency single-phase MOSFET transformerless inverter is presented for the PV micro-inverter applications. The PWM modulation and circuit operation principle are then described. The common mode and differential mode voltage model is then presented and analyzed for circuit design. Experimental results of a 250 W hardware prototype are shown to demonstrate the merits of the proposed MOSFET based phase-le and the proposed transformerless inverter.
New codes require PV inverters to provide system regulation and service to improve the distribution system stabilization. One obvious impact on PV inverters is that they now need to have reactive power generation capability. The Chapter 4 improves the MOFET based transformerless inverter in the Chapter 3 and proposed a novel pulse width modulation (PWM) method for reactive power generation. The ground loop voltage of this inverter under the proposed PWM method is also derived with common mode and differential mode circuit analyses, which indicate that high-frequency voltage component can be minimized with symmetrical design of inductors. A 250-W inverter hardware prototype has been designed and fabricated. Steady state and transient operating conditions are tested to demonstrate the validity of improved inverter and proposed PWM method for reactive power generation, high efficiency of the inverter circuit, and the high-frequency-free ground loop voltage.
Besides the high efficiency inverter circuit, the grid connection function is also the essential part of the PV system. The Chapter 5 present the overall function blocks for a grid-connected PV inverter system. The current control and voltage control loop is then analyzed, modeled, and designed. The dynamic reactive power generation is also realized in the control system. The new PLL method for the grid frequency/voltage disturbance is also realized and demonstrate the validity of the detection and protection capability for the voltage/frequency disturbance.
At last, a brief conclusion is given in the Chapter 6 about each work. After that, future works on device packaging, system integration, innovation on inverter circuit, and standard compliance are discussed. / Ph. D.
|
2 |
Nova metodologia full Newton para consideração dos limites de geração de potência reativa no problema de fluxo de potênciaPontes, Rafael de Paiva 21 March 2018 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-07-04T15:02:14Z
No. of bitstreams: 1
rafaeldepaivapontes.pdf: 2283859 bytes, checksum: b3ed61e125a30bbe054bb3183741ad41 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-07-06T14:23:02Z (GMT) No. of bitstreams: 1
rafaeldepaivapontes.pdf: 2283859 bytes, checksum: b3ed61e125a30bbe054bb3183741ad41 (MD5) / Made available in DSpace on 2018-07-06T14:23:02Z (GMT). No. of bitstreams: 1
rafaeldepaivapontes.pdf: 2283859 bytes, checksum: b3ed61e125a30bbe054bb3183741ad41 (MD5)
Previous issue date: 2018-03-21 / Este trabalho, realiza uma revisão da metodologia tradicional, de representação dos
limites de geração de potência reativa, na solução do problema de fluxo de potência, em coordenadas polares, pelo método de Newton-Raphson. Apresenta uma nova modelagem para o tratamento destes limites, baseada em uma formulação full Newton do problema. Para tanto, utiliza-se um conjunto de chaves sigmoides, que incorporam novas equações à matriz Jacobiana, de acordo com a geração de potência reativa da barra. De forma a tornar o sistema possível e determinado, a geração de potência reativa, é tratada como uma nova variável de estado do problema, corrigida a cada iteração do método de Newton. A formulação proposta, utiliza duas chaves sigmoides para o tratamento dos limites de geração de potência reativa, em barras PV e, duas chaves, que consideram o procedimento de retomada do controle (conhecido como estratégia de backoff ), das barras que atingiram limites, caso necessário. Dessa forma, não há uma mudança explícita no tipo da barra, como na metodologia tradicional, e a dimensão da matriz Jacobiana é mantida constante. Neste trabalho, todo o equacionamento e formulação, foi desenvolvido através do programa Matlab, e os resultados foram validados, utilizando-se o programa de análise de redes – ANAREDE, versão acadêmica, disponibilizada pelo Centro de Pesquisas de Energia Elétrica (CEPEL). São avaliados alguns sistemas benchmark IEEE e os resultados obtidos, demonstram a eficácia das formulações propostas. / This work, presents a review of the traditional methodology, of representing the limits of
reactive power generation, in the solution of the power flow problem, in polar coordinates, by the Newton-Raphson method. Presents a new modeling for the treatment of these limits, based on a formulation full Newton of the problem. For this purpose, a set of sigmoid switches is used, to incorporate new equations to the Jacobian matrix, according to the generation of reactive power of the bus. In order to produce a system possible and determined, reactive power generation, is treated as a new problem state variable, corrected at each iteration of the Newton’s method.
The proposed formulation, use two sigmoid switches for the tratment of reactive power
generation limits, in PV buses and also, two switches, that consider the procedure of
resumption of control (procedure known as backoff strategy), of the buses that reached
some limit, if necessary. Thus, there is no explicit change in the bus type, as in traditional methodology, and the Jacobian matrix dimension is kept constant.
In this work, all equation and formulation, were developed through Matlab software, and
the results were checked, using the network analysis program – ANAREDE, academic
version provided by Electrical Energy Research Center (CEPEL). Some IEEE benchmark systems are evaluated, and the results obtained, demonstrates the efficacy of the proposed formulations.
|
Page generated in 0.1284 seconds