Spelling suggestions: "subject:"realtime model"" "subject:"realtime model""
1 |
Modelling of gyro in an IR seeker for real-time simulation / Modellering av gyro i en IR-målsökare för realtidssimuleringNordman, Thomas January 2004 (has links)
<p>The target tracking system of an IR (InfraRed) guided missile is constantly subjected to disturbances due to the linear and angular motion of the missile. To diminish these LOS (Line Of Sight) disturbances the seeker of the missile can be built from a free gyroscope mounted in a very low friction suspension. The ability of the spinning gyroscope to maintain its direction relative to an inertial frame is used to stabilize the seeker LOS while tracking a target. The tracking velocity of the seeker, i.e. its angular velocity, is controlled by a feedback control unit where the signal from the IR detector is used as input. The electrical driven actuator consists of a set of coils and a magnet on the gyroscope. </p><p>The purpose of this thesis is to develop a real-time model of the seeker gyroscope in an existing IR MANPAD (MAN Portable Air Defense) missile. The aim is a model that is able to simulate the real system with consideration to the tracking velocity. The model should also be integrated into a hybrid simulator environment. </p><p>With relatively good knowledge of the system and its subsystems an initial physical modelling approach was used where elementary equations and accepted relations were assembled to describe the mechanism of the subsystems. This formed the framework of the model and gave a good foundation for further modelling. By using experimentation and more detailed system knowledge the initial approach could be developed and modified. Necessary approximations were made and unknown parameters were determined through system identification methods. The model was implemented in MATLAB Simulink. To make it suitable for real-time operation Real-Time Workshop was used. </p><p>The model design was evaluated in simulations where the tracking performance could be tested for different positions of the gyroscope. The results where satisfying and showed that the model was able to reproduce the output of the system well considering the speed of the model and the approximations made. One important reason that good results can be achieved with a relatively simple model is that the seeker is limited to small rotations. The model can be tuned to operate in a smaller range and the complexity can be kept low. A weakness of the model is that the output error increases for wide angles.</p>
|
2 |
Modelling of gyro in an IR seeker for real-time simulation / Modellering av gyro i en IR-målsökare för realtidssimuleringNordman, Thomas January 2004 (has links)
The target tracking system of an IR (InfraRed) guided missile is constantly subjected to disturbances due to the linear and angular motion of the missile. To diminish these LOS (Line Of Sight) disturbances the seeker of the missile can be built from a free gyroscope mounted in a very low friction suspension. The ability of the spinning gyroscope to maintain its direction relative to an inertial frame is used to stabilize the seeker LOS while tracking a target. The tracking velocity of the seeker, i.e. its angular velocity, is controlled by a feedback control unit where the signal from the IR detector is used as input. The electrical driven actuator consists of a set of coils and a magnet on the gyroscope. The purpose of this thesis is to develop a real-time model of the seeker gyroscope in an existing IR MANPAD (MAN Portable Air Defense) missile. The aim is a model that is able to simulate the real system with consideration to the tracking velocity. The model should also be integrated into a hybrid simulator environment. With relatively good knowledge of the system and its subsystems an initial physical modelling approach was used where elementary equations and accepted relations were assembled to describe the mechanism of the subsystems. This formed the framework of the model and gave a good foundation for further modelling. By using experimentation and more detailed system knowledge the initial approach could be developed and modified. Necessary approximations were made and unknown parameters were determined through system identification methods. The model was implemented in MATLAB Simulink. To make it suitable for real-time operation Real-Time Workshop was used. The model design was evaluated in simulations where the tracking performance could be tested for different positions of the gyroscope. The results where satisfying and showed that the model was able to reproduce the output of the system well considering the speed of the model and the approximations made. One important reason that good results can be achieved with a relatively simple model is that the seeker is limited to small rotations. The model can be tuned to operate in a smaller range and the complexity can be kept low. A weakness of the model is that the output error increases for wide angles.
|
3 |
Model Selection for Real-Time Decision Support SystemsLee, Ching-Chang 29 July 2002 (has links)
In order to cope with the turbulent environments in digital age, an enterprise should response to the changes quickly. Therefore, an enterprise must improve her ability of real-time decision-making. One way to increase the competence of real-time decision-making is to use Real-Time Decision Support Systems (RTDSS). A key feature for a Decision Support Systems (DSS) to successfully support real-time decision-making is to help decision-makers selecting the best models within deadline. This study focuses on developing methods to support the mechanism of model selection in DSS.
There are five results in this study. Firstly, we have developed a time-based framework to evaluate models. This framework can help decision-makers to evaluate the quality and cost of model solutions. Secondly, based on the framework of models evaluation, we also developed three models selection strategies. These strategies can help decision-makers to select the best model within deadline. Thirdly, according the definitions of parameter value precision and model solution precision in this study, we conduct a simulation analysis to understand the impacts of the precision of parameter values to the precision of a model solution. Fourthly, in order to understand the interaction among the model selection variables, we also simulate the application of model selection strategies. The results of simulation indicate our study can support models selection well. Finally, we developed a structure-based model retrieval method to help decision-makers find alternative models from model base efficiently and effectively.
In conclusion, the results of this research have drawn a basic skeleton for the development of models selection. This research also reveals much insight into the development of real-time decision support systems.
|
4 |
Seamless design of energy management systemsHuang, Renke 08 June 2015 (has links)
The contributions of the research are (a) an infrastructure of data acquisition systems that provides the necessary information for an automated EMS system enabling autonomous distributed state estimation, model validation, simplified protection, and seamless integration of other EMS applications, (b) an object-oriented, interoperable, and unified component model that can be seamlessly integrated with a variety of applications of the EMS, (c) a distributed dynamic state estimator (DDSE) based on the proposed data acquisition system and the object-oriented, interoperable, and unified component model, (d) a physically-based synchronous machine model, which is expressed in terms of the actual self and mutual inductances of the synchronous machine windings as a function of rotor position, for the purpose of synchronous machine parameters identification, and (e) a robust and highly efficient algorithm for the optimal power flow (OPF) problem, one of the most important applications of the EMS, based on the validated states and models of the power system provided by the proposed DDSE.
|
5 |
Simulation model refinement for Steer and Brake by Wire System : From Simulation Model to Hardware in the LoopRisi, Jeff, Veera, Chandan January 2023 (has links)
Simulation tools have progressed largely and in modern times they are commonly usedby engineers to design and simulate machines or part of machines before building and deploying them in the field. The field of Hardware-in-the-loop (HIL) is gaining significant interest among companies as they strive to enhance product safety and reliability simul-taneously reducing testing costs and accelerated development speed. This study presents the Real Time simulation improvements effectuated to the Steer and Brake by wire system on an underground face drill rig. These improvements in the model are validated with a comparison between simulated environment and real test data from the machine using a cosimulation between Matlab&Simulink with AMESim. At the end, this improved model is prepared to be compatible with an Hardware-in-the-loop application that requires an adequate computational time.
|
6 |
A hardware-based transient characterization of electrochemical start-up in an SOFC/gas turbine hybrid environment using a 1-D real time SOFC modelHughes, Dimitri O. 08 July 2011 (has links)
Solid oxide fuel cell/gas turbine (SOFC/GT) hybrid systems harness the capability to operate nearly 15 to 20 percentage points more efficiently than standard natural gas or pulverized coal power plants. Though the performance of these systems is quite promising, a number of system integration challenges, primarily with regards to thermal transport, still remain. It is for that reason that the Hybrid Performance Project (HyPer) facility, a Hardware-in-the-Loop SOFC/GT hybrid simulator, was built at the National Energy Technology Laboratory in Morgantown, WV. The HyPer facility couples an actual gas turbine with a combination of hardware and software that are used to simulate an actual SOFC. The facility is used to empirically address the system integration issues associated with fuel cell/gas turbine hybrids. Through this dissertation project, the software component of the SOFC simulator was upgraded from a 0-D lumped SOFC model to a 1-D, distributed, real-time operating SOFC model capable of spatio-temporal characterization of a fuel cell operating with a gas turbine in a hybrid arrangement. Once completed and verified, the upgraded HyPer facility was used to characterize the impact of cold air by-pass and initial fuel cell load on electrochemical start-up in an SOFC/GT hybrid environment. The impact of start-up on fuel cell inlet process parameters, SOFC performance and SOFC distributed behavior are presented and analyzed in comparative manner. This study represents the first time that an empirical parametric study, characterizing system operation during electrochemical start-up has been conducted.
|
Page generated in 0.0438 seconds