• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approximations for Nonlinear Differential Algebraic Equations to Increase Real-time Simulation Efficiency

Kwong, Gordon Houng 07 June 2010 (has links)
Full-motion driving simulators require efficient real-time high fidelity vehicle models in order to provide a more realistic vehicle response. Typically, multi-body models are used to represent the vehicle dynamics, but these have the unfortunate drawback of requiring the solution of a set of coupled differential algebraic equations (DAE). DAE's are not conducive to real-time implementation such as in a driving simulator, without a very expensive processing capability. The primary objective of this thesis is to show that multi-body models constructed from DAE's can be reasonably approximated with linear models using suspension elements that have nonlinear constitutive relationships. Three models were compared in this research, an experimental quarter-car test rig, a multi-body dynamics differential algebraic equation model, and a linear model with nonlinear suspension elements. Models constructed from differential algebraic equations are computationally expensive to compute and are difficult to realize for real-time simulations. Instead, a linear model with nonlinear elements was proposed for a more computationally efficient solution that would retain the nonlinearities of the suspension. Simplifications were made to the linear model with nonlinear elements to further reduce computation time for real-time simulation. The development process of each model is fully described in this thesis. Each model was excited with the same input and their outputs were compared. It was found that the linear model with nonlinear elements provides a reasonably good approximation of actual model with the differential algebraic equations. / Master of Science
2

Performance Analysis of J85 Turbojet Engine Matching Thrust with Reduced Inlet Pressure to the Compressor

Yarlagadda, Santosh 14 June 2010 (has links)
No description available.
3

Spatial-Temporal Statistical Modeling of Treated Drinking Water Usage

Arandia, Ernesto 16 September 2013 (has links)
No description available.
4

Sensitivity Analysis of Synchronous Generators for Real-Time Simulation

Munukuntla, Sowmya 13 May 2016 (has links)
The purpose of this thesis is to validate generator models for dynamic studies of power systems using PSS/E (Power System Simulator for Engineering), EMTP (ElectroMagnetic Transient Program), and Hypersim. To thoroughly evaluate the behavior of a power system in the three specified software packages, it is necessary to have an accurate model for the power system, especially the generator which is of interest. The effect of generator modeling on system response under normal conditions and under faulted conditions is investigated in this work. A methodology based on sensitivity analysis of generator model parameters is proposed aiming to homogenize the behavior of the same power system that is modeled in three software packages. Standard IEEE 14-Bus system is used as a test case for this investigation. Necessary changes in the exciter parameters are made using the proposed methodology so that the system behaves identical across all three software platforms.

Page generated in 0.065 seconds