• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 11
  • 11
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Teaching thinking to children in Taiwan

Chang, Lan-Wan January 1998 (has links)
No description available.
2

Inferring from the conditional an exploration of inferential judgments by students at selected grade levels /

Klein, Marvin L., January 1973 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1973. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 102-108).
3

Analysis of the everyday human environment via large scale commonsense reasoning /

Pentney, William. January 2008 (has links)
Thesis (Ph. D.)--University of Washington, 2008. / Vita. Includes bibliographical references (p. 105-112).
4

PREFERENCES: OPTIMIZATION, IMPORTANCE LEARNING AND STRATEGIC BEHAVIORS

Zhu, Ying 01 January 2016 (has links)
Preferences are fundamental to decision making and play an important role in artificial intelligence. Our research focuses on three group of problems based on the preference formalism Answer Set Optimization (ASO): preference aggregation problems such as computing optimal (near optimal) solutions, strategic behaviors in preference representation, and learning ranks (weights) for preferences. In the first group of problems, of interest are optimal outcomes, that is, outcomes that are optimal with respect to the preorder defined by the preference rules. In this work, we consider computational problems concerning optimal outcomes. We propose, implement and study methods to compute an optimal outcome; to compute another optimal outcome once the first one is found; to compute an optimal outcome that is similar to (or, dissimilar from) a given candidate outcome; and to compute a set of optimal answer sets each significantly different from the others. For the decision version of several of these problems we establish their computational complexity. For the second topic, the strategic behaviors such as manipulation and bribery have received much attention from the social choice community. We study these concepts for preference formalisms that identify a set of optimal outcomes rather than a single winning outcome, the case common to social choice. Such preference formalisms are of interest in the context of combinatorial domains, where preference representations are only approximations to true preferences, and seeking a single optimal outcome runs a risk of missing the one which is optimal with respect to the actual preferences. In this work, we assume that preferences may be ranked (differ in importance), and we use the Pareto principle adjusted to the case of ranked preferences as the preference aggregation rule. For two important classes of preferences, representing the extreme ends of the spectrum, we provide characterizations of situations when manipulation and bribery is possible, and establish the complexity of the problem to decide that. Finally, we study the problem of learning the importance of individual preferences in preference profiles aggregated by the ranked Pareto rule or positional scoring rules. We provide a polynomial-time algorithm that finds a ranking of preferences such that the ranked profile correctly decided all the examples, whenever such a ranking exists. We also show that the problem to learn a ranking maximizing the number of correctly decided examples is NP-hard. We obtain similar results for the case of weighted profiles.
5

Neuronové modelování matematických struktur a jejich rozšíření / Neural modelling of mathematical structures and their extensions

Smolík, Martin January 2019 (has links)
In this thesis we aim to build algebraic models in computer using machine learning methods and in particular neural networks. We start with a set of axioms that describe functions, constants and relations and use them to train neural networks approximating them. Every element is represented as a real vector, so that neural networks can operate on them. We also explore and compare different representations. The main focus in this thesis are groups. We train neural representations for cyclic (the simplest) and symmetric (the most complex) groups. Another part of this thesis are experiments with extending such trained models by introducing new "algebraic" elements, not unlike the classic extension of rational numbers Q[ √ 2]. 1
6

Neuronové modelování matematických struktur a jejich rozšíření / Neural modelling of mathematical structures and their extensions

Smolík, Martin January 2019 (has links)
In this thesis we aim to build algebraic models in computer using machine learning methods and in particular neural networks. We start with a set of axioms that describe functions, constants and relations and use them to train neural networks approximating them. Every element is represented as a real vector, so that neural networks can operate on them. We also explore and compare different representations. The main focus in this thesis are groups. We train neural representations for cyclic (the simplest) and symmetric (the most complex) groups. Another part of this thesis are experiments with extending such trained models by introducing new "algebraic" elements, not unlike the classic extension of rational numbers Q[ √ 2]. 1
7

The role of individual characteristics and structures of social knowledge in ethical reasoning using an experiential learning framework

White, Judith Anne January 1992 (has links)
No description available.
8

Exploring Relationships Among Students

Yenilmez, Ayse 01 January 2006 (has links) (PDF)
The purpose of this study was to identify the relative predictive influences of prior knowledge, meaningful learning orientation, formal reasoning ability and mode of instruction on understanding in photosynthesis and respiration in plants concepts. Two hundred thirty three 8th grade students from six classes of one elementary school in Ankara participated in this study. The study was carried out during the 2004-2005 Fall semester. Students in the experimental group (N=117) received conceptual change instruction, and the students in the control group (N=116) received traditional instruction. Two-tier multiple choice diagnostic test, &ldquo / Photosynthesis and Respiration in Plants Concept Test&rdquo / developed by Haslam and Treagust (1987), was used to determine students&rsquo / understanding of photosynthesis and respiration in plants concepts. The test was administered to the sample prior to the treatment as pre-test, and after the treatment as post-test. The pre-test scores were used as prior knowledge of students. Students&rsquo / reasoning abilities were measured by the &ldquo / Test of Logical Thinking&rdquo / and their learning orientations were measured by &ldquo / Learning Approach Questionnaire&rdquo / . The results of the study indicated that students held several misconceptions concerning photosynthesis and respiration in plants concepts. Significant differences between the experimental group and control group with respect to understanding of the concept were found in favor of experimental group. The main predictor of achievement in the experimental group was students&rsquo / prior knowledge, while it was reasoning ability in the control group. Meaningful learning orientation accounted for a small amount of variance in the experimental group but it did not contribute to understanding on post-test scores in traditional group.
9

Island Genetic Algorithm-based Cognitive Networks

El-Nainay, Mustafa Y. 24 July 2009 (has links)
The heterogeneity and complexity of modern communication networks demands coupling network nodes with intelligence to perceive and adapt to different network conditions autonomously. Cognitive Networking is an emerging networking research area that aims to achieve this goal by applying distributed reasoning and learning across the protocol stack and throughout the network. Various cognitive node and cognitive network architectures with different levels of maturity have been proposed in the literature. All of them adopt the idea of coupling network devices with sensors to sense network conditions, artificial intelligence algorithms to solve problems, and a reconfigurable platform to apply solutions. However, little further research has investigated suitable reasoning and learning algorithms. In this dissertation, we take cognitive network research a step further by investigating the reasoning component of cognitive networks. In a deviation from previous suggestions, we suggest the use of a single flexible distributed reasoning algorithm for cognitive networks. We first propose an architecture for a cognitive node in a cognitive network that is general enough to apply to future networking challenges. We then introduce and justify our choice of the island genetic algorithm (iGA) as the distributed reasoning algorithm. Having introduced our cognitive node architecture, we then focus on the applicability of the island genetic algorithm as a single reasoning algorithm for cognitive networks. Our approach is to apply the island genetic algorithm to different single and cross layer communication and networking problems and to evaluate its performance through simulation. A proof of concept cognitive network is implemented to understand the implementation challenges and assess the island genetic algorithm performance in a real network environment. We apply the island genetic algorithm to three problems: channel allocation, joint power and channel allocation, and flow routing. The channel allocation problem is a major challenge for dynamic spectrum access which, in turn, has been the focal application for cognitive radios and cognitive networks. The other problems are examples of hard cross layer problems. We first apply the standard island genetic algorithm to a channel allocation problem formulated for the dynamic spectrum cognitive network environment. We also describe the details for implementing a cognitive network prototype using the universal software radio peripheral integrated with our extended implementation of the GNU radio software package and our island genetic algorithm implementation for the dynamic spectrum channel allocation problem. We then develop a localized variation of the island genetic algorithm, denoted LiGA, that allows the standard island genetic algorithm to scale and apply it to the joint power and channel allocation problem. In this context, we also investigate the importance of power control for cognitive networks and study the effect of non-cooperative behavior on the performance of the LiGA. The localized variation of the island genetic algorithm, LiGA, is powerful in solving node-centric problems and problems that requires only limited knowledge about network status. However, not every communication and networking problems can be solved efficiently in localized fashion. Thus, we propose a generalized version of the LiGA, namely the K-hop island genetic algorithm, as our final distributed reasoning algorithm proposal for cognitive networks. The K-hop island genetic algorithm is a promising algorithm to solve a large class of communication and networking problems with controllable cooperation and migration scope that allows for a tradeoff between performance and cost. We apply it to a flow routing problem that includes both power control and channel allocation. For all problems simulation results are provided to quantify the performance of the island genetic algorithm variation. In most cases, simulation and experimental results reveal promising performance for the island genetic algorithm. We conclude our work with a discussion of the shortcomings of island genetic algorithms without guidance from a learning mechanism and propose the incorporation of two learning processes into the cognitive node architecture to solve slow convergence and manual configuration problems. We suggest the cultural algorithm framework and reinforcement learning techniques as candidate leaning techniques for implementing the learning processes. However, further investigation and implementation is left as future work. / Ph. D.
10

Cognitive Networks: Foundations to Applications

Friend, Daniel 21 April 2009 (has links)
Fueled by the rapid advancement in digital and wireless technologies, the ever-increasing capabilities of wireless devices have placed upon us a tremendous challenge - how to put all of this capability to effective use. Individually, wireless devices have outpaced the ability of users to optimally configure them. Collectively, the complexity is far more daunting. Research in cognitive networks seeks to provide a solution to the diffculty of effectively using the expanding capabilities of wireless networks by embedding greater degrees of intelligence within the network itself. In this dissertation, we address some fundamental questions related to cognitive networks, such as "What is a cognitive network?" and "What methods may be used to design a cognitive network?" We relate cognitive networks to a common artificial intelligence (AI) framework, the multi-agent system (MAS). We also discuss the key elements of learning and reasoning, with the ability to learn being the primary differentiator for a cognitive network. Having discussed some of the fundamentals, we proceed to further illustrate the cognitive networking principle by applying it to two problems: multichannel topology control for dynamic spectrum access (DSA) and routing in a mobile ad hoc network (MANET). The multichannel topology control problem involves confguring secondary network parameters to minimize the probability that the secondary network will cause an outage to a primary user in the future. This requires the secondary network to estimate an outage potential map, essentially a spatial map of predicted primary user density, which must be learned using prior observations of spectral occupancy made by secondary nodes. Due to the complexity of the objective function, we provide a suboptimal heuristic and compare its performance against heuristics targeting power-based and interference-based topology control objectives. We also develop a genetic algorithm to provide reference solutions since obtaining optimal solutions is impractical. We show how our approach to this problem qualifies as a cognitive network. In presenting our second application, we address the role of network state observations in cognitive networking. Essentially, we need a way to quantify how much information is needed regarding the state of the network to achieve a desired level of performance. This question is applicable to networking in general, but becomes increasingly important in the cognitive network context because of the potential volume of information that may be desired for decision-making. In this case, the application is routing in MANETs. Current MANET routing protocols are largely adapted from routing algorithms developed for wired networks. Although optimal routing in wired networks is grounded in dynamic programming, the critical assumption, static link costs and states, that enables the use of dynamic programming for wired networks need not apply to MANETs. We present a link-level model of a MANET, which models the network as a stochastically varying graph that possesses the Markov property. We present the Markov decision process as the appropriate framework for computing optimal routing policies for such networks. We then proceed to analyze the relationship between optimal policy and link state information as a function of minimum distance from the forwarding node. The applications that we focus on are quite different, both in their models as well as their objectives. This difference is intentional and signficant because it disassociates the technology, i.e. cognitive networks, from the application of the technology. As a consequence, the versatility of the cognitive networks concept is demonstrated. Simultaneously, we are able to address two open problems and provide useful results, as well as new perspective, on both multichannel topology control and MANET routing. This material is posted here with permission from the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Virginia Tech library's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this material, you agree to all provisions of the copyright laws protecting it. / Ph. D.

Page generated in 0.0916 seconds