• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 189
  • 53
  • 52
  • 49
  • 7
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 398
  • 258
  • 126
  • 84
  • 81
  • 67
  • 53
  • 50
  • 45
  • 41
  • 38
  • 35
  • 33
  • 32
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Groundwater assessment and sustainable management of the coastal alluvial aquifers in Namib Desert, Namibia: Omdel Aquifer as case study

Matengu, Brian Munihango January 2020 (has links)
Philosophiae Doctor - PhD / The study addressed the groundwater assessment and sustainable management of the coastal alluvial aquifers in Namib Desert, the Omaruru River Delta Aquifer (Omdel Aquifer) was used as a case study. Sustainable utilization of groundwater in parts of hyper-arid Sub-Saharan Africa, like the Namib Desert, is always a challenge due to lack of resources and data. Understanding of hydrogeological characteristics of the Omaruru Delta Aquifer System is a pre-requisite for the management of groundwater supply in the Central Namib area (Namib Desert). For the Omdel Aquifer in the Omaruru catchment, Namibia, issues to investigate include the lack of information on the geology and hydrogeological setting, the hydraulic properties and geometry of the aquifer at the inflow and outflow sections, groundwater recharge conditions upstream of the aquifer, and the impact of artificial recharge.
62

Assessing the hydrogeologic characteristics and sources of groundwater recharge and flow in the Elandsfontein aquifer, West Coast, Western Cape, South Africa

Smith, Kezia January 2020 (has links)
>Magister Scientiae - MSc / This study is part of the current investigation of the Elandsfontein aquifer to assist with the management of the system and to ensure the protection of the associated Langebaan Lagoon RAMSAR listed site. The Elandsfontein aquifer unit is situated adjacent to the Langebaan Road aquifer in the Lower Berg River Region. The aquifer unit is bordered by the Langebaan Lagoon (west), possible boundary toward the Langebaan Road aquifer (north), the Groen River bedrock high (southeast) and the Darling batholith (south).
63

Évaluation des ressources en eau de l’aquifère du Continental Intercalaire/Hamadien de la Région de Tahoua (bassin des Iullemeden, Niger) : impacts climatiques et anthropiques / Assessment of the Water Resources of the "Continental Inetrcelaire/Hamadien" aquifer in the Tahoua Region (Iullemeden Basin, Niger) : climatic and anthropic impacts

Hassane Saley, Abdel Kader 18 July 2018 (has links)
Dans la région de Tahoua (Niger), qui fait partie du bassin des Iullemeden, le système aquifère multicouche profond du Continental Intercalaire/Hamadien (CI/H) représente une réserve essentielle. Il est utilisé pour l'alimentation en eau potable des populations, pour les besoins en eau des industries extractives, et pour l'abreuvage du bétail, en raison de la dégradation de la qualité et le très faible débit des nappes phréatiques, et de celles du Crétacé supérieur. Malgré quelques études hydrogéologiques classiques conduites sur ce système aquifère, il reste mal connu, notamment en ce qui concerne la répartition des différentes masses d'eau et leurs temps de résidence/renouvellement. Cette étude, principalement fondée sur une approche hydrogéochimique et isotopique, vise à améliorer les connaissances sur le système aquifère du CI/H afin d'optimiser sa gestion durable. Les données ont été obtenues à partir de cartes géologiques et des fiches techniques de forage, de diagraphie, et d'essais de pompage. En outre, des échantillons d'eau ont été prélevés dans 30 forages répartis régulièrement dans la zone d'étude (114 425 km2). Des paramètres (pH, t et CE) ont été mesurés in situ et les échantillons ont été acheminés au laboratoire GEOPS où des analyses chimiques (ions majeurs) et isotopiques (18O, 2H, 13C, 14C) ont été effectuées. À partir des coupes géologiques, la couche du CH est présente au-dessus des couches CI dans la partie sud de la région mais pas dans la partie nord. Cependant, la piézométrie est continue sur toute la région. Dans la partie située au nord (au-dessus de 16°N), les lignes d'écoulement sont dirigées des affleurements du CI (est) vers l'ouest, et dans la partie située au sud (au-dessous de 16°N), des affleurements du CH (nord-est) vers le sud-ouest. La teneur en isotopes stables de l'eau (vs V-SMOW) varie de -8 à -7 ‰ pour 18O et de -59 à -48 ‰ pour 2H dans la partie nord (CI) et de -6 à -5 ‰ pour 18O et - 51 à -41 ‰ pour 2H dans la partie sud (CH), montrant deux masses d'eau différentes. Toutes ces teneurs sont très inférieures à celles correspondant aux précipitations actuelles, qui ne contribuent donc pas significativement à la recharge. Ceci est en accord avec les "âges" des eaux souterraines (5 à 36 ka) calculés à partir des teneurs en 14C (1 à 57 pmC), qui sont également en bon accord avec la piézométrie. Ainsi, même si la piézométrie continue du système aquifère du CI/H indique que les pressions sont en équilibre entre les différentes couches, les caractéristiques géochimiques montrent des différences notables entre la partie sud, où la couche de CH est présente, et la partie nord, où elle est absente. Les échanges d'eau entre les différentes couches sont donc très limités. Dans toutes ces couches, les eaux souterraine sont vieilles (> 5ka) et ont été rechargées sous un climat plus frais qu'aujourd'hui. Il est probable qu'elles soient largement héritées de périodes humide du Pléistocène supérieur et de la "Période Humide Africaine" (~ 15-5 ka) et devraient être gérées comme une ressource fossile. / In the region of Tahoua (Niger), which is part of the Iullemeden basin, the deep multilayer aquifer system of the Continental Intercalaire/Hamadien (CI/H) represents an essential reserve. It is exploited for the drinking-water supply for the local population, for the extractive-industry's water use and for the watering of cattle, because of the degradation of water quality and the very low flow in shallow aquifers and Upper Cretaceous aquifers. Despite some classical hydrogeological studies, this system remains poorly known, particularly with regard to the distribution of the different water bodies and their residence/renewal times. This study, mainly based on a geochemical and isotopic approach, aims to improve knowledge on the CI/H system in order to optimize its sustainable management. Data were obtained from geological maps, and data-sheets of drilling, pumping and logging test. In addition, water samples were collected from 30 boreholes regularly distributed over the study area (114 425 km2). Some parameters (pH, t and EC) were measured in situ and the samples were sent to the GEOPS laboratory where chemical (major ions) and isotopic (stable isotopes in water, 14C, 13C) analyses were performed. From geological cross-sections, the CH layer is present above the CI layers in the southern part of the region but not in the northern part. However, piezometry is continuous over the whole region. In the northern part (above 16°N), the flow lines are directed from the CI outcrops (east) to west and in the southern part (below 16°N), from the CH outcrops (east) to south-west. Stable isotope contents of water (vs V-SMOW) range from -8 to -7 ‰ for 18O and from -59 to -48 ‰ for 2H in the northern part (CI) and from -6 to -5 ‰ for 18O and -51 to -41 ‰ for 2H in the southern part (CH), showing two different water masses. All these values are much lower than those corresponding to present-day precipitation, which does not significantly contribute to recharge. This is in agreement with the groundwater "ages" (5 to 36 ka) calculated from 14C contents (1 to 57 pmC), which are also in good agreement with piezometry. Therefore, even if the continuous piezometry of the deep aquifer system of CI/H indicates that pressures are in equilibrium between the different layers, the geochemical features show noticeable differences between the southern part, where the CH layer is present, and the northern part, where it is absent. Thus, water exchanges between the different layers are very limited. In all these layers, groundwater is old (> 5ka) and was recharged under a cooler climate than at present. Probably, it is largely inherited from Upper-Pleistocene wet periods and from the "African Humid Period" (~15-5 ka) and should be managed as a fossil resource
64

Paradoxical Behavior in Groundwater Levels in Response to Precipitation Events

Shelters, Alexandra 10 September 2019 (has links)
No description available.
65

Hydrogeologic Controls, Initiation, and In-Situ Rates of Microbial Methanogenesis in Organic-Rich Reservoirs: Illinois Basin, U.S.A.

Schlegel, Melissa January 2011 (has links)
Microbial methane from subsurface organic-rich units such as coals and shale support approximately 5% of the United States and Canada's energy needs. In the deep subsurface, microbial methane is formed by the metabolism of primarily CO2, H2, and acetate by methanogens. These metabolites are the by-products of multi-step biodegradation of complex organic matter by microbial consortia. This study investigates microbial methane in the Illinois Basin, which is present in organic-rich shallow glacial sediments (surficial), Pennsylvanian coals (up to 600 m depth), and the Upper Devonian New Albany Shale (up to 900 m depth). Findings from the study show that hydrogeochemical conditions are favorable for methanogenesis in each reservoir, with a decrease in groundwater flushing rates corresponding to a decrease in average reservoir depth and an increase in carbon isotopic fractionation. The deeper reservoirs (coals and shale) were paleopasteurized, necessitating re-inoculation by methanogens. The microbes were likely advectively transported from shallow sediments into the coals and shale, where areas of microbial methanogenesis correlate with freshwater recharge. The recharge in the shale was primarily sourced from paleoprecipitation with minor contributions from glacial meltwater during the Pleistocene (4He ages). All areas sampled in the shale were affected by Pleistocene recharge, however groundwater ages in areas of microbial methanogenesis are younger (average 0.33 Ma) than areas with thermogenic methane (average 1.0 Ma). Estimates of in-situ microbial methane production rates for the shale (10-1000 TCF/Ma) are 104-106 times slower than laboratory rates. Only limited biodegradation is observed in the shale. In-situ stimulation of methane production may be most effective if aimed at increasing production of the supporting microbial consortia as well as methanogens. Trace metal concentrations in the shale are below known levels of inhibition or enhancement, with the exception of Fe, suggesting that microbial methanogenesis is not repressed by any of the measured trace metals and may be improved with the addition of Ag, Co, Cr, Ni, and Zn.
66

Impacts of Floods on Riparian Groundwater and Post-Event Streamflow Across Spatial and Temporal Scales

Simpson, Scott Carlyle January 2011 (has links)
Riparian areas are valuable resources, particularly in semi-arid areas where water is usually scarce and rapid streamflow responses to runoff are common. Only recently has the importance of in-channel recharge during high streamflow periods ("floods") been recognized in rivers with gaining and losing reaches where recharge processes and flowpaths can be very complex. This dissertation builds upon this recent work by investigating how three factors influence how riparian systems respond to floods over a range of temporal and spatial scales. First, the impact of differences in local hydrogeologic forcings are investigated at the seasonal and 50 meter-reach scales. Second, the significance of flood event size and duration is studied at the multi-year and river (~50 Km) scale. Third, an underlying mechanism behind how changes in bed sediment composition can influence stream-aquifer interactions at the event- and point-scales is developed. Major findings of this work include observations along the Upper San Pedro River of seasonal floodwater storage below moderately gaining reaches and longer-term storage below losing reaches (seasonal to multi-year depending on the nature of the riparian groundwater flow system). The longest and largest floods (with respect to flow volume) dominate floodwater recharge in the Bill Williams River and an apparent flood size and duration threshold exists. This threshold must be met or exceeded in order for individual events to induce observable amounts of recharge that can then influence the amount and composition of later streamflow. This threshold agrees with the process presented here involving preferential mobilization and deposition of fine bed sediment particles--which dictate hydraulic conductivity--during each event that would lead to disproportionately more recharge during large floods. Forecasts of increased precipitation intensity and decreased annual precipitation in some regions, including the southwestern United States, due to changes in the earth's climate are likely to make floods a more important driver of riparian hydrologic processes. Consequently, the work presented here and other process-based studies of how floods influence riparian hydrology and water quality will be useful in making well-informed decisions regarding riparian preservation, management and restoration as human demands and the global climate change in the future.
67

Estimating Surface Water Presence and Infiltration for Intermittent Streams in the Semi-arid Southwest

Nicholas, Hillary Dianne January 2012 (has links)
Ephemeral streams with spatially and temporally variable flow are important ecological settings in semi-arid desert environments that until now have been poorly characterized. Our quantitative analysis explores how intermittent stream hydrology varies across geomorphic (mountain streams to desert washes) and climatic gradients (150-400 mm precipitation) in Southern Arizona. Stream channels were instrumented for the first time with a co-deployment of vertical profiles of subsurface temperature sensors, and electrical resistance (ER) sensors on the bed surface. HYDRUS 1-D was used to simulate vertical unsaturated flow, and differences along hydrologic, topographic, and climatic gradients were compared. Annual surface water presence varied < 1%-82% of the year, and reach-normalized infiltration water volumes were 20,000-2,500,000 m³/(km y). Surface water presence was correlated with geomorphic gradient, and infiltration volumes were correlated with surface water presence. This sensor co-deployment method has shown that ER sensors alone are necessary to estimate infiltration in semi-arid, poorly-sorted, coarse desert channels.
68

Groundwater recharge estimation in Table Mountain Group aquifer systems with a case study of Kammanassie area.

Wu, Yong January 2005 (has links)
The focus of this study was on recharge mechanisms and recharge estimation within the Table Mountain Group area. The study evaluated recharge processes and recharge estimation methods in the Table Mountain Group aquifer systems.
69

Physical Hydrogeology and Impact of Urbanization at the Waterloo West Side: A Groundwater Modelling Approach

Radcliffe, Anthony January 2000 (has links)
In the last few decades protection of the environment has moved to the forefront of earth science research. Sustainable development is becoming more important to rapidly growing communities throughout southern Ontario including the City of Waterloo which has adopted an ecosystem planning approach toward future urban expansion. The City of Waterloo is located in the Regional Municipality of Waterloo which relies mainly on local groundwater resources for its drinking water supply. The Waterloo West Side is a collective name for several new developments occurring at the western limit of the City of Waterloo. Development of the Waterloo West Side is encroaching on a potential regional groundwater recharge area. Recent studies have recommended that some of these developments will require artificial infiltration facilities to augment the reduction in infiltration rates at the post-development stage. For this study, the pre-development groundwater flow system was characterized using a three-dimensional finite element model (WATFLOW). The regional Waterloo Moraine Model (approximately 750 km2) was refined in the study area (approximately 25 km2) so as to include the regional-scale influence on the local-scale groundwater flow. In addition, to approximate the complex groundwater flow system, within the study area, modifications were made to the current conceptual model. Several existing techniques were utilized in the numerical approach including three-dimensional parameterization and automated calibration methods. Simulations were completed to steady-state therefore results are averaged on a yearly basis. The potential impact of urbanization on the groundwater flow system was investigated by modifying the surficial boundary condition to simulate post-development infiltration rates (increased runoff) in areas where development will occur. The impact to local surface water was investigated for each post-development scenario. In addition, the effect on the regional and local groundwater flow systems were compared for each scenario.
70

Comparing potential recharge estimates from three Land Surface Models across the western US

Niraula, Rewati, Meixner, Thomas, Ajami, Hoori, Rodell, Matthew, Gochis, David, Castro, Christopher L. 02 1900 (has links)
Groundwater is a major source of water in the western US. However, there are limited recharge estimates in this region due to the complexity of recharge processes and the challenge of direct observations. Land surface Models (LSMs) could be a valuable tool for estimating current recharge and projecting changes due to future climate change. In this study, simulations of three LSMs (Noah, Mosaic and VIC) obtained from the North American Land Data Assimilation System (NLDAS-2) are used to estimate potential recharge in the western US. Modeled recharge was compared with published recharge estimates for several aquifers in the region. Annual recharge to precipitation ratios across the study basins varied from 0.01% to 15% for Mosaic, 3.2% to 42% for Noah, and 6.7% to 31.8% for VIC simulations. Mosaic consistently underestimates recharge across all basins. Noah captures recharge reasonably well in wetter basins, but overestimates it in drier basins. VIC slightly overestimates recharge in drier basins and slightly underestimates it for wetter basins. While the average annual recharge values vary among the models, the models were consistent in identifying high and low recharge areas in the region. Models agree in seasonality of recharge occurring dominantly during the spring across the region. Overall, our results highlight that LSMs have the potential to capture the spatial and temporal patterns as well as seasonality of recharge at large scales. Therefore, LSMs (specifically VIC and Noah) can be used as a tool for estimating future recharge in data limited regions.

Page generated in 0.0632 seconds