• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 6
  • 1
  • Tagged with
  • 17
  • 17
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Reconnaissance automatique des gestes de la langue française parlée complétée

Burger, Thomas 26 October 2007 (has links) (PDF)
Le LPC est un complément à la lecture labiale qui facilite la communication des malentendants. Sur le principe, il s'agit d'effectuer des gestes avec une main placée à côté du visage pour désambigüiser le mouvement des lèvres, qui pris isolément est insuffisant à la compréhension parfaite du message. Le projet RNTS TELMA a pour objectif de mettre en place un terminal téléphonique permettant la communication des malentendants en s'appuyant sur le LPC. Parmi les nombreuses fonctionnalités que cela implique, il est nécessaire de pouvoir reconnaître le geste manuel du LPC et de lui associer un sens. L'objet de ce travail est la segmentation vidéo, l'analyse et la reconnaissance des gestes de codeur LPC en situation de communication. Cela fait appel à des techniques de segmentation d'images, de classification, d'interprétation de geste, et de fusion de données. Afin de résoudre ce problème de reconnaissance de gestes, nous avons proposé plusieurs algorithmes originaux, parmi lesquels (1) un algorithme basé sur la persistance rétinienne permettant la catégorisation des images de geste cible et des images de geste de transition, (2) une amélioration des méthodes de multi-classification par SVM ou par classifieurs unaires via la théorie de l'évidence, assortie d'une méthode de conversion des probabilités subjectives en fonction de croyance, et (3) une méthode de décision partielle basée sur la généralisation de la Transformée Pignistique, afin d'autoriser les incertitudes dans l'interprétation de gestes ambigus.
12

Reconnaissance des actions humaines à partir d'une séquence vidéo

Touati, Redha 12 1900 (has links)
The work done in this master's thesis, presents a new system for the recognition of human actions from a video sequence. The system uses, as input, a video sequence taken by a static camera. A binary segmentation method of the the video sequence is first achieved, by a learning algorithm, in order to detect and extract the different people from the background. To recognize an action, the system then exploits a set of prototypes generated from an MDS-based dimensionality reduction technique, from two different points of view in the video sequence. This dimensionality reduction technique, according to two different viewpoints, allows us to model each human action of the training base with a set of prototypes (supposed to be similar for each class) represented in a low dimensional non-linear space. The prototypes, extracted according to the two viewpoints, are fed to a $K$-NN classifier which allows us to identify the human action that takes place in the video sequence. The experiments of our model conducted on the Weizmann dataset of human actions provide interesting results compared to the other state-of-the art (and often more complicated) methods. These experiments show first the sensitivity of our model for each viewpoint and its effectiveness to recognize the different actions, with a variable but satisfactory recognition rate and also the results obtained by the fusion of these two points of view, which allows us to achieve a high performance recognition rate. / Le travail mené dans le cadre de ce projet de maîtrise vise à présenter un nouveau système de reconnaissance d’actions humaines à partir d'une séquence d'images vidéo. Le système utilise en entrée une séquence vidéo prise par une caméra statique. Une méthode de segmentation binaire est d'abord effectuée, grâce à un algorithme d’apprentissage, afin de détecter les différentes personnes de l'arrière-plan. Afin de reconnaitre une action, le système exploite ensuite un ensemble de prototypes générés, par une technique de réduction de dimensionnalité MDS, à partir de deux points de vue différents dans la séquence d'images. Cette étape de réduction de dimensionnalité, selon deux points de vue différents, permet de modéliser chaque action de la base d'apprentissage par un ensemble de prototypes (censé être relativement similaire pour chaque classe) représentés dans un espace de faible dimension non linéaire. Les prototypes extraits selon les deux points de vue sont amenés à un classifieur K-ppv qui permet de reconnaitre l'action qui se déroule dans la séquence vidéo. Les expérimentations de ce système sur la base d’actions humaines de Wiezmann procurent des résultats assez intéressants comparés à d’autres méthodes plus complexes. Ces expériences montrent d'une part, la sensibilité du système pour chaque point de vue et son efficacité à reconnaitre les différentes actions, avec un taux de reconnaissance variable mais satisfaisant, ainsi que les résultats obtenus par la fusion de ces deux points de vue, qui permet l'obtention de taux de reconnaissance très performant.
13

Analyse du geste dansé et retours visuels par modèles physiques : apport des qualités de mouvement à l'interaction avec le corps entier

Fdili Alaoui, Sarah 19 December 2012 (has links) (PDF)
La présente thèse a pour but d'approfondir l'étude du geste dans le cadre de l'interaction Homme Machine. Il s'agit de créer de nouveaux paradigmes d'interaction qui offrent à l'utilisateur de plus amples possibilités d'expression basées sur le geste. Un des vecteurs d'expression du geste, très rarement traité en Interaction Homme Machine, qui lui confère sa coloration et son aspect, est ce que les théoriciens et praticiens de la danse appellent " les qualités de mouvement ". Nous mettons à profit des collaborations avec le domaine de la danse pour étudier la notion de qualités de mouvement et l'intégrer à des paradigmes d'interaction gestuelle. Notre travail analyse les apports de l'intégration des qualités de mouvement comme modalité d'interaction, fournit les outils propices à l'élaboration de cette intégration (en termes de méthodes d'analyse, de visualisation et de contrôle gestuel), en développe et évalue certaines techniques d'interaction.Les contributions de la thèse se situent d'abord dans la formalisation de la notion de qualités de mouvement et l'évaluation de son intégration dans un dispositif interactif en termes d'expérience utilisateur. Sur le plan de la visualisation des qualités de mouvement, les travaux menés pendant la thèse ont permis de démontrer que les modèles physiques masses-ressorts offrent de grandes possibilités de simulation de comportements dynamiques et de contrôle en temps réel. Sur le plan de l'analyse, la thèse a permis de développer des approches novatrices de reconnaissance automatique des qualités de mouvement de l'utilisateur. Enfin, à partir des approches d'analyse et de visualisation des qualités de mouvement, la thèse a donné lieu à l'implémentation d'un ensemble de techniques d'interaction. Elle a appliqué et évalué ses techniques dans le contexte de la pédagogie de la danse et de la performance.
14

Reconnaissance de gestes à partir de séquences vidéos

Kaâniche, Mohamed-Bécha 28 October 2009 (has links) (PDF)
Dans cette thèse, nous voulons reconnaître les gestes (par ex. lever la main) et plus généralement les actions brèves (par ex. tomber, se baisser) effectués par un individu. De nombreux travaux ont été proposés afin de reconnaître des gestes dans un contexte précis (par ex. en laboratoire) à l'aide d'une multiplicité de capteurs (par ex. réseaux de cameras ou individu observé muni de marqueurs). Malgré ces hypothèses simplificatrices, la reconnaissance de gestes reste souvent ambigüe en fonction de la position de l'individu par rapport aux caméras. Nous proposons de réduire ces hypothèses afin de concevoir un algorithme général permettant de reconnaître des gestes d'un individu évoluant dans un environnement quelconque et observé à l'aide d'un nombre réduit de caméras. Il s'agit d'estimer la vraisemblance de la reconnaissance des gestes en fonction des conditions d'observation. Notre méthode consiste à classifier un ensemble de gestes à partir de l'apprentissage de descripteurs de mouvement. Les descripteurs de mouvement sont des signatures locales du mouvement de points d'intérêt associés aux descriptions locales de la texture du voisinage des points considérés. L'approche a été validée sur les bases de données de gestes publiques KTH et IXMAS; des résultats encourageants ont été obtenus.
15

Reconnaissance des actions humaines à partir d'une séquence vidéo

Touati, Redha 12 1900 (has links)
The work done in this master's thesis, presents a new system for the recognition of human actions from a video sequence. The system uses, as input, a video sequence taken by a static camera. A binary segmentation method of the the video sequence is first achieved, by a learning algorithm, in order to detect and extract the different people from the background. To recognize an action, the system then exploits a set of prototypes generated from an MDS-based dimensionality reduction technique, from two different points of view in the video sequence. This dimensionality reduction technique, according to two different viewpoints, allows us to model each human action of the training base with a set of prototypes (supposed to be similar for each class) represented in a low dimensional non-linear space. The prototypes, extracted according to the two viewpoints, are fed to a $K$-NN classifier which allows us to identify the human action that takes place in the video sequence. The experiments of our model conducted on the Weizmann dataset of human actions provide interesting results compared to the other state-of-the art (and often more complicated) methods. These experiments show first the sensitivity of our model for each viewpoint and its effectiveness to recognize the different actions, with a variable but satisfactory recognition rate and also the results obtained by the fusion of these two points of view, which allows us to achieve a high performance recognition rate. / Le travail mené dans le cadre de ce projet de maîtrise vise à présenter un nouveau système de reconnaissance d’actions humaines à partir d'une séquence d'images vidéo. Le système utilise en entrée une séquence vidéo prise par une caméra statique. Une méthode de segmentation binaire est d'abord effectuée, grâce à un algorithme d’apprentissage, afin de détecter les différentes personnes de l'arrière-plan. Afin de reconnaitre une action, le système exploite ensuite un ensemble de prototypes générés, par une technique de réduction de dimensionnalité MDS, à partir de deux points de vue différents dans la séquence d'images. Cette étape de réduction de dimensionnalité, selon deux points de vue différents, permet de modéliser chaque action de la base d'apprentissage par un ensemble de prototypes (censé être relativement similaire pour chaque classe) représentés dans un espace de faible dimension non linéaire. Les prototypes extraits selon les deux points de vue sont amenés à un classifieur K-ppv qui permet de reconnaitre l'action qui se déroule dans la séquence vidéo. Les expérimentations de ce système sur la base d’actions humaines de Wiezmann procurent des résultats assez intéressants comparés à d’autres méthodes plus complexes. Ces expériences montrent d'une part, la sensibilité du système pour chaque point de vue et son efficacité à reconnaitre les différentes actions, avec un taux de reconnaissance variable mais satisfaisant, ainsi que les résultats obtenus par la fusion de ces deux points de vue, qui permet l'obtention de taux de reconnaissance très performant.
16

Analyse du geste dansé et retours visuels par modèles physiques : apport des qualités de mouvement à l'interaction avec le corps entier / Dance Gesture Analysis and Visual Feedback based on Physical Models : Contributions of Movement Qualities in Whole Body Interaction

Fdili Alaoui, Sarah 19 December 2012 (has links)
La présente thèse a pour but d’approfondir l’étude du geste dans le cadre de l’interaction Homme Machine. Il s’agit de créer de nouveaux paradigmes d’interaction qui offrent à l’utilisateur de plus amples possibilités d’expression basées sur le geste. Un des vecteurs d’expression du geste, très rarement traité en Interaction Homme Machine, qui lui confère sa coloration et son aspect, est ce que les théoriciens et praticiens de la danse appellent « les qualités de mouvement ». Nous mettons à profit des collaborations avec le domaine de la danse pour étudier la notion de qualités de mouvement et l’intégrer à des paradigmes d’interaction gestuelle. Notre travail analyse les apports de l’intégration des qualités de mouvement comme modalité d’interaction, fournit les outils propices à l’élaboration de cette intégration (en termes de méthodes d’analyse, de visualisation et de contrôle gestuel), en développe et évalue certaines techniques d’interaction.Les contributions de la thèse se situent d’abord dans la formalisation de la notion de qualités de mouvement et l’évaluation de son intégration dans un dispositif interactif en termes d’expérience utilisateur. Sur le plan de la visualisation des qualités de mouvement, les travaux menés pendant la thèse ont permis de démontrer que les modèles physiques masses-ressorts offrent de grandes possibilités de simulation de comportements dynamiques et de contrôle en temps réel. Sur le plan de l’analyse, la thèse a permis de développer des approches novatrices de reconnaissance automatique des qualités de mouvement de l’utilisateur. Enfin, à partir des approches d’analyse et de visualisation des qualités de mouvement, la thèse a donné lieu à l’implémentation d’un ensemble de techniques d’interaction. Elle a appliqué et évalué ses techniques dans le contexte de la pédagogie de la danse et de la performance. / The thesis studies gesture in the context of Human-Computer interaction. It aims at creating new interaction paradigms that offer the user further expressive possibilities based on gestures. The theorists and practitioners of the dance call "movement qualities” (MQ), a notion that conveys expressive content describing the way a gesture is performed. This notion has been rarely taken into consideration in the field of HCI. Our work draws on collaborations with the field of dance to explore the notion of movement qualities and to integrate it as interaction modality. 

The contributions of the thesis are in the formalism of the notion of movement qualities and evaluation of its integration as interaction modality in terms of user experience. 

We also provide computational tools for considering MQ in interactive systems in terms of analysis, representation and gesture control methods. On the representational level, our work have demonstrated that physical models based on masses and springs systems offer great opportunities for simulating dynamics related to MQs and for real-time gesture control. On the analysis level, we developed innovative approaches to automatic real time recognition of movement qualities. Finally, we implemented of a set of interaction techniques based on movement qualities that we applied and evaluated in the context of dance pedagogy and performance.
17

Automatic non linear metric learning : Application to gesture recognition / Apprentissage automatique de métrique non linéaire : Application à la reconnaissance de gestes

Berlemont, Samuel 11 February 2016 (has links)
Cette thèse explore la reconnaissance de gestes à partir de capteurs inertiels pour Smartphone. Ces gestes consistent en la réalisation d'un tracé dans l'espace présentant une valeur sémantique, avec l'appareil en main. Notre étude porte en particulier sur l'apprentissage de métrique entre signatures gestuelles grâce à l'architecture "Siamoise" (réseau de neurones siamois, SNN), qui a pour but de modéliser les relations sémantiques entre classes afin d'extraire des caractéristiques discriminantes. Cette architecture est appliquée au perceptron multicouche (MultiLayer Perceptron). Les stratégies classiques de formation d'ensembles d'apprentissage sont essentiellement basées sur des paires similaires et dissimilaires, ou des triplets formés d'une référence et de deux échantillons respectivement similaires et dissimilaires à cette référence. Ainsi, nous proposons une généralisation de ces approches dans un cadre de classification, où chaque ensemble d'apprentissage est composé d’une référence, un exemple positif, et un exemple négatif pour chaque classe dissimilaire. Par ailleurs, nous appliquons une régularisation sur les sorties du réseau au cours de l'apprentissage afin de limiter les variations de la norme moyenne des vecteurs caractéristiques obtenus. Enfin, nous proposons une redéfinition du problème angulaire par une adaptation de la notion de « sinus polaire », aboutissant à une analyse en composantes indépendantes non-linéaire supervisée. A l'aide de deux bases de données inertielles, la base MHAD (Multimodal Human Activity Dataset) ainsi que la base Orange, composée de gestes symboliques inertiels réalisés avec un Smartphone, les performances de chaque contribution sont caractérisées. Ainsi, des protocoles modélisant un monde ouvert, qui comprend des gestes inconnus par le système, mettent en évidence les meilleures capacités de détection et rejet de nouveauté du SNN. En résumé, le SNN proposé permet de réaliser un apprentissage supervisé de métrique de similarité non-linéaire, qui extrait des vecteurs caractéristiques discriminants, améliorant conjointement la classification et le rejet de gestes inertiels. / As consumer devices become more and more ubiquitous, new interaction solutions are required. In this thesis, we explore inertial-based gesture recognition on Smartphones, where gestures holding a semantic value are drawn in the air with the device in hand. In our research, speed and delay constraints required by an application are critical, leading us to the choice of neural-based models. Thus, our work focuses on metric learning between gesture sample signatures using the "Siamese" architecture (Siamese Neural Network, SNN), which aims at modelling semantic relations between classes to extract discriminative features, applied to the MultiLayer Perceptron. Contrary to some popular versions of this algorithm, we opt for a strategy that does not require additional parameter fine tuning, namely a set threshold on dissimilar outputs, during training. Indeed, after a preprocessing step where the data is filtered and normalised spatially and temporally, the SNN is trained from sets of samples, composed of similar and dissimilar examples, to compute a higher-level representation of the gesture, where features are collinear for similar gestures, and orthogonal for dissimilar ones. While the original model already works for classification, multiple mathematical problems which can impair its learning capabilities are identified. Consequently, as opposed to the classical similar or dissimilar pair; or reference, similar and dissimilar sample triplet input set selection strategies, we propose to include samples from every available dissimilar classes, resulting in a better structuring of the output space. Moreover, we apply a regularisation on the outputs to better determine the objective function. Furthermore, the notion of polar sine enables a redefinition of the angular problem by maximising a normalised volume induced by the outputs of the reference and dissimilar samples, which effectively results in a Supervised Non-Linear Independent Component Analysis. Finally, we assess the unexplored potential of the Siamese network and its higher-level representation for novelty and error detection and rejection. With the help of two real-world inertial datasets, the Multimodal Human Activity Dataset as well as the Orange Dataset, specifically gathered for the Smartphone inertial symbolic gesture interaction paradigm, we characterise the performance of each contribution, and prove the higher novelty detection and rejection rate of our model, with protocols aiming at modelling unknown gestures and open world configurations. To summarise, the proposed SNN allows for supervised non-linear similarity metric learning, which extracts discriminative features, improving both inertial gesture classification and rejection.

Page generated in 0.106 seconds