Spelling suggestions: "subject:"reconnaissance dde scène"" "subject:"reconnaissance dee scène""
1 |
MODELE DE GRAPHE ET MODELE DE LANGUE POUR LA RECONNAISSANCE DE SCENES VISUELLESPham, Trong-Ton 02 December 2010 (has links) (PDF)
Nous présentons une nouvelle méthode pour exploiter la relation entre différents niveaux de représentation d'image afin de compléter le modèle de graphe visuel. Le modèle de graphe visuel est une extension du modèle de langue classique en recherche d'information. Nous utilisons des régions d'images et des points d'intérêts (associées automatiquement à des concepts visuels), ainsi que des relations entre ces concepts, lors de la construction de la représentation sous forme de graphe. Les résultats obtenus sur catégorisation de la collection RobotVision de la compétition d'ImageCLEF 2009 et la collection STOIC-101 montrent que (a) la procédure de l'induction automatique des concepts d'une image est efficace, et (b) l'utilisation des relations spatiales entre deux niveaux de représentation, en plus de concepts, permet d'améliorer le taux de reconnaissance.
|
2 |
Reconnaissance de scènes multimodale embarquée / Embedded multimodal scene recognitionBlachon, David 29 February 2016 (has links)
Contexte : Cette thèse se déroule dans les contextes de l'intelligence ambiante et de la reconnaissance de scène (sur mobile). Historiquement, le projet vient de l'entreprise ST-Ericsson. Il émane d'un besoin de développer et intégrer un "serveur de contexte" sur smartphone capable d'estimer et de fournir des informations de contexte pour les applications tierces qui le demandent. Un exemple d'utilisation consiste en une réunion de travail où le téléphone sonne~; grâce à la reconnaissance de la scène, le téléphone peut automatiquement réagir et adapter son comportement, par exemple en activant le mode vibreur pour ne pas déranger.Les principaux problèmes de la thèse sont les suivants : d'abord, proposer une définition de ce qu'est une scène et des exemples de scènes pertinents pour l'application industrielle ; ensuite, faire l'acquisition d'un corpus de données à exploiter par des approches d'apprentissage automatique~; enfin, proposer des solutions algorithmiques au problème de la reconnaissance de scène.Collecte de données : Aucune des bases de données existantes ne remplit les critères fixés (longs enregistrements continus, composés de plusieurs sources de données synchronisées dont l'audio, avec des annotations pertinentes).Par conséquent, j'ai développé une application Android pour la collecte de données. L'application est appelée RecordMe et a été testé avec succès sur plus de 10 appareils. L'application a été utilisée pour 2 campagnes différentes, incluant la collecte de scènes. Cela se traduit par plus de 500 heures enregistrées par plus de 25 bénévoles, répartis principalement dans la région de Grenoble, mais aussi à l'étranger (Dublin, Singapour, Budapest). Pour faire face au problème de protection de la vie privée et de sécurité des données, des mesures ont été mises en place dans le protocole et l'application de collecte. Par exemple, le son n'est pas sauvegardé, mes des coefficients MFCCs sont enregistrés.Définition de scène : L'étude des travaux existants liés à la tâche de reconnaissance de scène, et l'analyse des annotations fournies par les bénévoles lors de la collecte de données, ont permis de proposer une définition d'une scène. Elle est définie comme la généralisation d'une situation, composée d'un lieu et une action effectuée par une seule personne (le propriétaire du smartphone). Des exemples de scènes incluent les moyens de transport, la réunion de travail, ou le déplacement à pied dans la rue. La notion de composition permet de décrire la scène avec plusieurs types d'informations. Cependant, la définition est encore trop générique, et elle pourrait être complétée par des informations additionnelles, intégrée à la définition comme de nouveaux éléments de la composition.Algorithmique : J'ai réalisé plusieurs expériences impliquant des techniques d'apprentissage automatique supervisées et non non-supervisées. La partie supervisée consiste en de la classification. La méthode est commune~: trouver des descripteurs des données pertinents grâce à l'utilisation d'une méthode de sélection d'attribut ; puis, entraîner et tester plusieurs classifieurs (arbres de décisions et forêt d'arbres décisionnels ; GMM ; HMM, et DNN). Également, j'ai proposé un système à 2 étages composé de classifieurs formés pour identifier les concepts intermédiaires et dont les prédictions sont fusionnées afin d'estimer la scène la plus probable. Les expérimentations non-supervisées visent à extraire des informations à partir des données. Ainsi, j'ai appliqué un algorithme de regroupement hiérarchique ascendant, basé sur l'algorithme EM, sur les données d'accélération et acoustiques considérées séparément et ensemble. L'un des résultats est la distinction des données d'accélération en groupes basés sur la quantité d'agitation. / Context: This PhD takes place in the contexts of Ambient Intelligence and (Mobile) Context/Scene Awareness. Historically, the project comes from the company ST-Ericsson. The project was depicted as a need to develop and embed a “context server” on the smartphone that would get and provide context information to applications that would require it. One use case was given for illustration: when someone is involved in a meeting and receives a call, then thanks to the understanding of the current scene (meet at work), the smartphone is able to automatically act and, in this case, switch to vibrate mode in order not to disturb the meeting. The main problems consist of i) proposing a definition of what is a scene and what examples of scenes would suit the use case, ii) acquiring a corpus of data to be exploited with machine learning based approaches, and iii) propose algorithmic solutions to the problem of scene recognition.Data collection: After a review of existing databases, it appeared that none fitted the criteria I fixed (long continuous records, multi-sources synchronized records necessarily including audio, relevant labels). Hence, I developed an Android application for collecting data. The application is called RecordMe and has been successfully tested on 10+ devices, running Android 2.3 and 4.0 OS versions. It has been used for 3 different campaigns including the one for scenes. This results in 500+ hours recorded, 25+ volunteers were involved, mostly in Grenoble area but abroad also (Dublin, Singapore, Budapest). The application and the collection protocol both include features for protecting volunteers privacy: for instance, raw audio is not saved, instead MFCCs are saved; sensitive strings (GPS coordinates, device ids) are hashed on the phone.Scene definition: The study of existing works related to the task of scene recognition, along with the analysis of the annotations provided by the volunteers during the data collection, allowed me to propose a definition of a scene. It is defined as a generalisation of a situation, composed of a place and an action performed by one person (the smartphone owner). Examples of scenes include taking a transportation, being involved in a work meeting, walking in the street. The composition allows to get different kinds of information to provide on the current scene. However, the definition is still too generic, and I think that it might be completed with additionnal information, integrated as new elements of the composition.Algorithmics: I have performed experiments involving machine learning techniques, both supervised and unsupervised. The supervised one is about classification. The method is quite standard: find relevant descriptors of the data through the use of an attribute selection method. Then train and test several classifiers (in my case, there were J48 and Random Forest trees ; GMM ; HMM ; and DNN). Also, I have tried a 2-stage system composed of a first step of classifiers trained to identify intermediate concepts and whose predictions are merged in order to estimate the most likely scene. The unsupervised part of the work aimed at extracting information from the data, in an unsupervised way. For this purpose, I applied a bottom-up hierarchical clustering, based on the EM algorithm on acceleration and audio data, taken separately and together. One of the results is the distinction of acceleration into groups based on the amount of agitation.
|
Page generated in 0.109 seconds