• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 63
  • 49
  • 25
  • 14
  • 8
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 184
  • 38
  • 36
  • 24
  • 22
  • 21
  • 20
  • 18
  • 17
  • 15
  • 15
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Treatment of shale gas wastewater in the Marcellus : a comparative analysis

Yisa, Junaid Ololade 18 November 2014 (has links)
This analysis focused primarily on three main treatment methods which were re-use, recycle, and disposal wells. The re-use treatment option is when wastewater is mixed with source water in order to meet fracturing water requirements. With this option, the hope is that the wastewater for re-use will require little or no treatment at all. The second treatment option is the recycle option. This option provides high quality water for re-use or discharge to the environment using a recycling technology. The credibility of this option is heavily dependent on its ability to recycle almost all of the wastewater with little or none left for disposal or treatment. The third option is well disposal. This entails disposing all of the wastewater into a deep formation. The software used for building the model is called @Risk. The model’s costs were estimates from recent research to capture the risks and uncertainties associated with wastewater disposal. The model revealed that re-use option remains the most cost effective treatment method to reduce overall water management cost in the Marcellus. The re-use option is most viable when a hydraulic fracturing schedule is continuous (no significant storage requirement) and infrastructure is available to transport wastewater from one fracturing operation to the other. The recycle option is the second most viable disposal option. This option is most effective when the hydraulic fracturing schedule is staggered in both time and distance because distilled water from recycling facilities can be easily discharged into the environment or stored. The most unfavorable option for wastewater management at the Marcellus is the well disposal option due to the high cost of trucking wastewater to disposal wells in neighboring states or counties. It also requires the highest usage of fresh water. A well disposal option can be favorable at the onset of a hydraulic fracturing schedule when there are low levels of infrastructure, hydraulic fracturing programs are not continuous or localized in proximity, and the volume of wastewater does not exceed the capacity for injection. In this case, disposal wells can be more favorable than recycle or re-use if they are in close proximity to drilling sites. / text
22

Is Sweden Ready to Implement a Textile Recycling System?

PORSE, MOA January 2014 (has links)
: It is problematic from an environmental point of view when consumers have damaged or worn out textiles and need to dispose of them (Domina and Koch, 2002). Domina and Koch (2002) explain that unwanted consumer textiles that are not suited for donation to charity organizations, are simply thrown into the trash. Textiles are nearly 100 percent recyclable and according to Hawley (2006), nothing in the textile and apparel industry consequently should be wasted. It will be a major positive impact on the environment if we can reduce the amounts of textile waste through recycling. In addition, recycling will reduce the emissions arising from new manufacturing by making use of existing resources (Naturvårdsverket, 2013). Recycling signifies any recovery operation by which waste materials are re-processed into products, materials or substances (Tojo., et al. 2012). It is an ecosystem-inspired design approach where all waste from one component of the system becomes food for another (Fletcher, 2008). There is currently no large scale recycling of textiles in Sweden, nor is there any major export for recycling of Swedish textiles (Palm, 2011). But Swedish producers and retailers have started to consider the value of re- establishing a recycling plant within the country (Tojo et al., 2012). The future market of the textile industry faces an inevitable challenge. It is important to find materials that could replace the large amount of cotton used today and find solutions on how to produce synthetic fiber without increasing the yield of oil (Sandow, 2012). In addition, Consequently, there might be a greater demand for recycled textile fibers in the future. However, the issue of the implementation of a textile recycling system in Sweden is complex with many aspects to take into account. The aim for this report was to explore the areas of research in textile recycling, and by dint of seven experts, determine whether or not Sweden should implement a textile recycling system, and how that should be done. The essential factors for implementing a textile recycling system in Sweden was concluded to be: environmentally sustainable growth, better technology and chemistry, consumer responsibility, producer responsibility, supply of textiles for recycling, demand for recycled fibers, facilitating the voluntary organizations (optimizing reuse), pricing and profitability, sustainable and economical logistics, supporting policies, sustainable products that are easy to recycle, global collaborations. It was concluded that Sweden should implement a textile recycling system. The initial phase of the system (within ten years) should be to establish collecting arrangement for textiles in all conditions. The discarded textiles should be sorted in Sweden and exported for recycling. If the textile industry will shift to having a near-sourcing strategy and if synthetic cellulose fibers will revive the Swedish textile industry, Sweden could benefit from having a complete recycling system within 20 years. / Program: Applied Textile Management
23

Extraction of Preservative Components from Treated Wood Waste

Zhou, Gao 31 August 2012 (has links)
The preservative concentration difference in treated wood was investigated to understand the component distribution; a study of different chemical extractions of treated wood waste was carried out and certain reagents were realized to be feasible to the preservative component removal. During fixation, the preservative components redistributed between earlywood and latewood and concentration gradients at depths also developed. Different solvent extractions of CCA treated wood were tested and ion exchange, chelation and metal dissolving were all mechanisms for component extraction. The transition of Cr(III) to Cr(VI) by oxidizing reagents (NaClO and H2O2) can make possible the direct reuse of extracted chemicals as a preservative. Different reaction factors in the oxidant extractions were compared and higher pHs significantly improved the oxidizing capability of the reagents and CCA component removal. Fresh and aged CCA treated wood generally responsed similarly to the oxidant extractions. However, arsenic in aged wood was more difficult to be removed by NaClO, while, H2O2 was more efficient to extract CCA components from aged wood than fresh wood. Monoethanolamine (Mea) efficiently extracted copper (above 90%) from ACQ treated wood and the formation of stable neutral Cu(Mea)2 in sufficient Mea solution is the main mechanism for Mea extraction. Little wood structure degradation occurred during the process. Mea (10%~15%) extraction was fast and the effect of temperature was insignificant. Cu diffusion in the longitudinal direction was the most significant compared to other wood directions. To further promote Mea extraction, repeated extraction (batch-based and column-based) was performed and proved to be more efficient, feasible and economical than one-time extraction. Column-based continuous Mea extraction showed both high Cu removal (up to 99%) and Cu accumulation in the extract. After the preservative treated wood waste is decontaminated significantly, the extract solution can be reused by directly mixing with the preservative treating solution, which is the most straightforward procedure for the recycling of chemicals removed from the preservative treated wood.
24

Extraction of Preservative Components from Treated Wood Waste

Zhou, Gao 31 August 2012 (has links)
The preservative concentration difference in treated wood was investigated to understand the component distribution; a study of different chemical extractions of treated wood waste was carried out and certain reagents were realized to be feasible to the preservative component removal. During fixation, the preservative components redistributed between earlywood and latewood and concentration gradients at depths also developed. Different solvent extractions of CCA treated wood were tested and ion exchange, chelation and metal dissolving were all mechanisms for component extraction. The transition of Cr(III) to Cr(VI) by oxidizing reagents (NaClO and H2O2) can make possible the direct reuse of extracted chemicals as a preservative. Different reaction factors in the oxidant extractions were compared and higher pHs significantly improved the oxidizing capability of the reagents and CCA component removal. Fresh and aged CCA treated wood generally responsed similarly to the oxidant extractions. However, arsenic in aged wood was more difficult to be removed by NaClO, while, H2O2 was more efficient to extract CCA components from aged wood than fresh wood. Monoethanolamine (Mea) efficiently extracted copper (above 90%) from ACQ treated wood and the formation of stable neutral Cu(Mea)2 in sufficient Mea solution is the main mechanism for Mea extraction. Little wood structure degradation occurred during the process. Mea (10%~15%) extraction was fast and the effect of temperature was insignificant. Cu diffusion in the longitudinal direction was the most significant compared to other wood directions. To further promote Mea extraction, repeated extraction (batch-based and column-based) was performed and proved to be more efficient, feasible and economical than one-time extraction. Column-based continuous Mea extraction showed both high Cu removal (up to 99%) and Cu accumulation in the extract. After the preservative treated wood waste is decontaminated significantly, the extract solution can be reused by directly mixing with the preservative treating solution, which is the most straightforward procedure for the recycling of chemicals removed from the preservative treated wood.
25

Design of Recycle/Reuse Networks with Thermal Effects and Variable Sources

Zavala Oseguera, Jose Guadalupe 2009 August 1900 (has links)
Recycle/reuse networks are commonly used in industrial facilities to conserve natural resources, reduce environmental impact, and improve process economics. The design of these networks is a challenging task because of the numerous possibilities of assigning stream (process sources) to units that may potentially employ them (process sinks). Additionally, several fresh streams with different qualities and costs may be used to supplement the recycle of process streams. The selection of the type and flow of these fresh resources is an important step in the design of the recycle/reuse networks. This work introduces systematic approaches to address two new categories in the design of recycle/reuse networks: (a) The incorporation of thermal effects in the network. Two new aspects are introduced: heat of mixing of process sources and temperature constraints imposed on the feed to the process sinks iv (b) Dealing with variation in process sources. Two types of source variability are addressed: flowrate and composition For networks with thermal effects, an assignment optimization formulation is developed. Depending on the functional form of the heat of mixing, the formulation may be a linear or a nonlinear program. The solution of this program provides optimum flowrates of the fresh streams as well as the segregation, mixing, and allocation of the process sources to sinks. For networks with variable sources, a computer code is developed to solve the problem. It is based on discretizing the search space and using the concept of "floating pinch" to insure solution feasibility and optimal targets. Case studies are solved to illustrate the applicability of the new approaches.
26

Design of an Integrated System to Recycle Zircaloy Cladding Using a Hydride-Milling-Dehydride Process

Kelley, Randy Dean 2010 August 1900 (has links)
A process for recycling spent nuclear fuel cladding, a zirconium alloy (Zircaloy), into a metal powder that may be used for advanced nuclear fuel applications, was investigated to determine if it is a viable strategy. The process begins with hydriding the Zircaloy cladding hulls after the spent nuclear fuel has been dissolved from the cladding. The addition of hydrogen atoms to the zirconium matrix stresses the lattice and forms brittle zirconium hydride, which is easily pulverized into a powder. The dehydriding process removes hydrogen by heating the powder in a vacuum, resulting in a zirconium metal powder. The two main objectives of this research are to investigate the dehydriding process and to design, build and demonstrate a specialized piece of equipment to process the zirconium from cladding hulls to metal powder without intermediate handling. The hydriding process (known from literature) took place in a 95 percent argon - 5 percent hydrogen atmosphere at 500 degrees C while the dehydriding process conditions were researched with a Thermogavimetric Analyzer (TGA). Data from the TGA showed the dehydriding process requires vacuum conditions (~0.001 bar) and 800 degrees C environment to decompose the zirconium hydride. Zirconium metal powder was created in two separate experiments with different milling times, 45 minutes (coarse powder) and 12 hours (fine powder). Both powders were analyzed by three separate analytical methods, X-Ray Diffraction (XRD), size characterization and digital micrographs. XRD analysis proved that the process produced a zirconium metal. Additionally, visual observations of the samples silvery color confirmed the presence of zirconium metal. The presence on zirconium metal in the two samples confirmed the operation of the hydriding / milling / hydriding machine. Further refining of the hydride / milling / dehydride machine could make this process commercially favorable when compared to the high cost of storing nuclear waste and its components. An additional important point is that this process can easily be used on other metals that are subject to hydrogen embrittlement, knowing the relevant temperatures and pressures associated with the hydriding / dehydriding of that particular metal.
27

High-Fidelity Nuclear Energy System Optimization towards an Environmentally Benign, Sustainable, and Secure Energy Source

Ames, David E. 2010 August 1900 (has links)
A new high-fidelity integrated system method and analysis approach was developed and implemented for consistent and comprehensive evaluations of advanced fuel cycles leading to minimized Transuranic (TRU) inventories. The method has been implemented in a developed code system integrating capabilities of MCNPX for highfidelity fuel cycle component simulations. The impact associated with energy generation and utilization is immeasurable due to the immense, widespread, and myriad effects it has on the world and its inhabitants. The polar extremes are demonstrated on the one hand, by the high quality of life enjoyed by individuals with access to abundant reliable energy sources, and on the other hand by the global-scale environmental degradation attributed to the affects of energy production and use. Thus, nations strive to increase their energy generation, but are faced with the challenge of doing so with a minimal impact on the environment and in a manner that is self-reliant. Consequently, a revival of interest in nuclear energy has followed with much focus placed on technologies for transmuting nuclear spent fuel. In this dissertation, a Nuclear Energy System (NES) configuration was developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized TRU waste inventories, long-term activities, and radiotoxicities. The reactor systems and fuel cycle components that make up the NES were selected for their ability to perform in tandem to produce clean, safe, and dependable energy in an environmentally conscious manner. The reactor systems include the AP1000, VHTR, and HEST. The diversity in performance and spectral characteristics for each was used to enhance TRU waste elimination while efficiently utilizing uranium resources and providing an abundant energy source. The High Level Waste (HLW) stream produced by typical nuclear systems was characterized according to the radionuclides that are key contributors to long-term waste management issues. The TRU component of the waste stream becomes the main radiological concern for time periods greater than 300 years. A TRU isotopic assessment was developed and implemented to produce a priority ranking system for the TRU nuclides as related to long-term waste management and their expected characteristics under irradiation in the different reactor systems of the NES. Detailed 3D whole-core models were developed for analysis of the individual reactor systems of the NES. As an inherent part of the process, the models were validated and verified by performing experiment-to-code and/or code-to-code benchmarking procedures, which provided substantiation for obtained data and results. Reactor core physics and material depletion calculations were performed and analyzed. A computational modeling approach was developed for integrating the individual models of the NES. A general approach was utilized allowing for the Integrated System Model (ISM) to be modified in order to provide simulation for other systems with similar attributes. By utilizing this approach, the ISM is capable of performing system evaluations under many different design parameter options. Additionally, the predictive capabilities of the ISM and its computational time efficiency allow for system sensitivity/uncertainty analysis and the implementation of optimization techniques. The NES has demonstrated great potential for providing safe, clean, and secure energy and doing so with foreseen advantages over the LEU once-through fuel cycle option. The main advantages exist due to better utilization of natural resources by recycling the used nuclear fuel, and by reducing the final amount and time span for which the resulting HLW must be isolated from the public and the environment due to radiological hazard. If deployed, the NES can substantially reduce the long-term radiological hazard posed by current HLW, extend uranium resources, and approach the characteristics of an environmentally benign energy system.
28

Waste Management Motivation and Intentions: Competitive Theory Testing in Cases of Household Recycling Behavior

CHIU, CHIA-FAN 15 June 2000 (has links)
Despite the fact that there has been an official waste recycling and composting system in Taiwanese, the system still works improperly and inefficiently in our society due to problems such as culture, political complexity, etc. We plan to examine the antecedents of the behavior of household recycling in the context of an integrated behavior model. This model incorporates our previous depth interview and a wide variety of important factors from previous research on environmental behavior into a single theoretical framework provided by the Theory of Planned Behavior. The competitive model is planned to be tested using data from a sample of near 2000 individual respondents, each of whom will complete a survey. We will draw public policy implications and focus on a more open and more effective process for operating waste management systems based on the results.
29

The difference of environmental attitude and behavior between recyclers and non-recyclers

Huang, Suh-Ji 31 July 2002 (has links)
The difference of envirnomental attitude and behavior between the recyclers and non-recyclers.
30

Multi-Recycling of Transuranic Elements in a Modified PWR Fuel Assembly

Chambers, Alex 2011 August 1900 (has links)
The nuclear waste currently generated in the United States is stored in spent fuel pools and dry casks throughout the country awaiting a permanent disposal solution. One efficient solution would be to remove the actinides from the waste and transmute these isotopes in a fast spectrum reactor. Currently this technology is unavailable on a commercial scale and a considerable amount of research and development is still required. An alternate solution is to reprocess and recycle the used fuel in thermal reactors, creating new fuel while reducing the amount of waste and its impact to the environment. This thesis examines the possibility of multi-recycling the transuranics (Pu, Np, Am, and Cm) in a standard pressurized water reactor (PWR). Two types of recycling strategies will be examined: one where Pu, Np, and Am are recycled (TRU-Cm) and a second where the previous isotopes as well as Cm are recycled (TRU+Cm). To offset the hardened neutron spectrum that results from the inclusion of the transuranics, a smaller fuel pin is employed to provide additional moderation. Computer simulations are used to model the in-reactor physics and long-term isotopic decay. Each fuel type is assessed based on the required U-235 enrichment, void coefficient, transuranic production/destruction, and radiotoxicity reduction as compared to a UOX and MOX assembly. It is found that the most beneficial recycling strategy is the one where all of the transuranics are recycled. The inclusion of Cm reduces the required U-235 enrichment, compared to the other multi-recycled fuel and, after a significant number of recycles, can result in the required enrichment to decrease. This fuel type also maintains a negative void coefficient for each recycle. The void coefficient of the fuel type without Cm becomes positive after the third cycle. The transmutation destruction of the two multi-recycled assemblies is less than that of a MOX assembly, but the transmutation efficiency of the multi-recycled assemblies exceeds the MOX assemblies. The radiotoxicity of both multi-recycled assemblies is significantly lower than the UOX and MOX with the TRU+Cm fuel being the lowest. When Curium is recycled only 28,000 years are required for the radiotoxicity of the waste to reach that of natural Uranium and when Cm is not recycled, the amount of time increases to 57,000 years.

Page generated in 0.0433 seconds