• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Control of Adult Bone Marrow Erythroid Progenitor Cell Fate by Combinatorial Niche Factor Signals

Wang, Weijia 16 August 2013 (has links)
Stem and progenitor cell fate (self-renewal, proliferation, survival, differentiation) is tightly controlled by niche factors and the interplay of these factors is particularly important to comprehend for the development of stem cell therapies. During erythropoiesis, erythroid progenitors at the colony forming unit-erythroid (CFU-E) stage are responsive to both stem cell factor (SCF) and erythropoietin (EPO); however, the joint action of SCF and EPO in these cells and the underlying mechanisms remain to be defined. In this study, quantitative data on the activation of signaling pathways and gene expression profiles provided definitive evidence for two parallel but complementary mechanisms that resulted in enhanced generation of red blood cells from mouse bone marrow-derived CFU-E culture in the presence of SCF and EPO. First, SCF and EPO signaling intersected within the extracellular signal-regulated kinase (ERK) pathway and the sustained ERK activation was required for the maximal changes in the expression levels of genes that are involved in the proliferation and survival of CFU-Es. Second, the apparent competition between SCF and EPO in regulating c-Kit expression was found to have a dramatic impact on the terminal differentiation of CFU-Es. The latter mechanism was, for the first time, reported in a primary cell system. In addition, a fetal liver-derived conditioned medium further enhanced the survival and proliferation of bone marrow CFU-Es in the presence of SCF and EPO by not only increasing the ERK signaling duration but also, the amplitude. The agents present in the conditioned media possess significant clinical potential to stimulate erythropoiesis both in vivo and in vitro. In conclusion, our study has provided novel insights into the mechanisms by which combinations of niche factors control the fate of erythroid progenitors at a unique transitional stage and highlighted the important role of the ERK signaling dynamics in adult erythropoiesis.
2

Control of Adult Bone Marrow Erythroid Progenitor Cell Fate by Combinatorial Niche Factor Signals

Wang, Weijia 16 August 2013 (has links)
Stem and progenitor cell fate (self-renewal, proliferation, survival, differentiation) is tightly controlled by niche factors and the interplay of these factors is particularly important to comprehend for the development of stem cell therapies. During erythropoiesis, erythroid progenitors at the colony forming unit-erythroid (CFU-E) stage are responsive to both stem cell factor (SCF) and erythropoietin (EPO); however, the joint action of SCF and EPO in these cells and the underlying mechanisms remain to be defined. In this study, quantitative data on the activation of signaling pathways and gene expression profiles provided definitive evidence for two parallel but complementary mechanisms that resulted in enhanced generation of red blood cells from mouse bone marrow-derived CFU-E culture in the presence of SCF and EPO. First, SCF and EPO signaling intersected within the extracellular signal-regulated kinase (ERK) pathway and the sustained ERK activation was required for the maximal changes in the expression levels of genes that are involved in the proliferation and survival of CFU-Es. Second, the apparent competition between SCF and EPO in regulating c-Kit expression was found to have a dramatic impact on the terminal differentiation of CFU-Es. The latter mechanism was, for the first time, reported in a primary cell system. In addition, a fetal liver-derived conditioned medium further enhanced the survival and proliferation of bone marrow CFU-Es in the presence of SCF and EPO by not only increasing the ERK signaling duration but also, the amplitude. The agents present in the conditioned media possess significant clinical potential to stimulate erythropoiesis both in vivo and in vitro. In conclusion, our study has provided novel insights into the mechanisms by which combinations of niche factors control the fate of erythroid progenitors at a unique transitional stage and highlighted the important role of the ERK signaling dynamics in adult erythropoiesis.

Page generated in 0.1537 seconds