Spelling suggestions: "subject:"rede fox (vulpes golpes)"" "subject:"rede fox (pulpes golpes)""
1 |
The Murray River Turtle, Emydura macquarii: Population Dynamics, Nesting Ecology and Impact of the Introduced Red Fox, Vulpes vulpesSpencer, Ricky-John January 2001 (has links)
I studied aspects of the ecology of the Murray River turtle, Emydura macquarii, to determine the impact of the introduced red fox, Vulpes vulpes. The fox is one of Australia's worst vertebrate pests through its predation on livestock and native mammals, but their impact on reptilian communities is not known. I conducted a large-scale mark-recapture study to evaluate population growth of E. macquarii in the Albury region of the upper Murray River by determining growth, reproduction and survival. The study was conducted downstream of the first, and largest, impoundment on the Murray River, Lake Hume. Emydura macquarii predominantly inhabit the lagoons in the upper Murray River, as the mainstream and Lake are possibly too cool to maintain metabolic processes. They are easily captured in hoop traps and the use of live decoys maximises trap success. Over 2000 hatchling turtles were marked and released into two lagoons between January 1997 and January 1998. Growth of these individuals is rapid over the first few years but declines towards maturity, and is indeterminate after maturity. Although growth annuli are not well defined, even on young individuals, the von Bertalanffy model describes the growth of both male and female E. macquarii. Male turtles mature at 5-6 years and females mature at 10-12 years. Female turtles may maximise reproductive potential by delaying maturity and producing one relatively large clutch (mean = 21 eggs) per year, which is positively correlated with body size (PL). Although primarily related to body size, clutch size varies annually because of environmental conditions. If winter and summer rainfalls are below average and temperatures are above average, E. macquarii may reduce clutch size to increase the chance of the eggs surviving. Nesting predominantly occurs during the first major rain-bearing depression in November. Habitat variables, including distance from water, nearest nest, and tree, and soil type were measured for each nest to determine characteristics that attract predators. Nests close to the shoreline and trees are heavily preyed on, and nests constructed in sand are less likely to be destroyed by predators. Foxes detect nests through a combination of chemical cues from eggs and slight soil disturbances, whereas birds only destroy nests observed being constructed during the day. Female turtles alter nesting behaviour and construct nests much further away from water when foxes were removed and as a result, nests are less dense and away from trees. Thus in high predation risk areas, turtles minimise emergence and search times to reduce the risk of direct predation by foxes. Predation is reduced when nests are in lower densities and away from trees, because predators increase search efforts when nests are in higher densities and birds are more likely to destroy nests close to trees. Reproductive success is further reduced in high predation risk areas because more nests are constructed in sandy substrates where clutch success is reduced compared to incubation in more dense substrates. Where predators are a significant source of mortality, prey may use indirect methods, such as chemical recognition, to avoid encounters. Nesting turtles did not avoid areas where fox odour was present, suggesting that they assess predation pressure from foxes by other mechanisms, such as visual recognition. However, an innate response occurs to the odour of a once common predator on the Murray River, the eastern quoll (Dasyurus viverrinus), whereby turtles recognise and avoid nesting in areas where quoll odour is present. Therefore nesting turtles show a similar avoidance response to two different predators, using different mechanisms of detection. Similarly, predation risk may influence hatching times and nest emergence. The rate of embryonic development of E. macquarii may increase or eggs may hatch early so that the clutch hatches synchronously, thereby reducing the risk of predation through group emergence from the nest. Emydura macquarii reach densities of over 100 turtles.ha-1, with the majority of the population consisting of sexually mature individuals. Emydura macquarii has a Type III survival curve where mortality is extremely high in the egg stage (93% nest predation), remaining high over the hatchling stage (minimum survival rate- 10%), but decreasing rapidly throughout the juvenile stage (~70% juvenile survival). Adult survival is extremely high, with greater than 95% of adults surviving each year. Foxes through nest predation cause most mortality but a small proportion (~3%) of nesting adult females are killed by foxes each year. A removal program evaluated the impact of foxes. In 1996, fox numbers were monitored around four lagoons by spotlighting and non-toxic bait uptake. Foxes were removed from around two of the lagoons throughout 1997 and 1998, using spotlight shooting and 1080 bait poisoning. Fox numbers were continually monitored around all four lagoons during the study. Nest predation rates remained around 90% in all sites where foxes were present, but fell to less than 50% when foxes were removed. At the same time, predation on nesting female turtles was eliminated where foxes were removed. Demographic models using staged based survival schedules, together with growth and fecundity values for E. macquarii show a decline of 4% per year in these populations. Elasticity analyses shows that survival of adult female E. macquarii has the major influence on population stability and a reduction of nest predation alone is unlikely to address the population decline. Management options, such as reducing foxes prior to nesting around key lagoons, will stabilise the population decline, and eliminating foxes completely from certain areas with high dispersal potential, will promote recruitment of juvenile E. macquarii.
|
2 |
The Murray River Turtle, Emydura macquarii: Population Dynamics, Nesting Ecology and Impact of the Introduced Red Fox, Vulpes vulpesSpencer, Ricky-John January 2001 (has links)
I studied aspects of the ecology of the Murray River turtle, Emydura macquarii, to determine the impact of the introduced red fox, Vulpes vulpes. The fox is one of Australia's worst vertebrate pests through its predation on livestock and native mammals, but their impact on reptilian communities is not known. I conducted a large-scale mark-recapture study to evaluate population growth of E. macquarii in the Albury region of the upper Murray River by determining growth, reproduction and survival. The study was conducted downstream of the first, and largest, impoundment on the Murray River, Lake Hume. Emydura macquarii predominantly inhabit the lagoons in the upper Murray River, as the mainstream and Lake are possibly too cool to maintain metabolic processes. They are easily captured in hoop traps and the use of live decoys maximises trap success. Over 2000 hatchling turtles were marked and released into two lagoons between January 1997 and January 1998. Growth of these individuals is rapid over the first few years but declines towards maturity, and is indeterminate after maturity. Although growth annuli are not well defined, even on young individuals, the von Bertalanffy model describes the growth of both male and female E. macquarii. Male turtles mature at 5-6 years and females mature at 10-12 years. Female turtles may maximise reproductive potential by delaying maturity and producing one relatively large clutch (mean = 21 eggs) per year, which is positively correlated with body size (PL). Although primarily related to body size, clutch size varies annually because of environmental conditions. If winter and summer rainfalls are below average and temperatures are above average, E. macquarii may reduce clutch size to increase the chance of the eggs surviving. Nesting predominantly occurs during the first major rain-bearing depression in November. Habitat variables, including distance from water, nearest nest, and tree, and soil type were measured for each nest to determine characteristics that attract predators. Nests close to the shoreline and trees are heavily preyed on, and nests constructed in sand are less likely to be destroyed by predators. Foxes detect nests through a combination of chemical cues from eggs and slight soil disturbances, whereas birds only destroy nests observed being constructed during the day. Female turtles alter nesting behaviour and construct nests much further away from water when foxes were removed and as a result, nests are less dense and away from trees. Thus in high predation risk areas, turtles minimise emergence and search times to reduce the risk of direct predation by foxes. Predation is reduced when nests are in lower densities and away from trees, because predators increase search efforts when nests are in higher densities and birds are more likely to destroy nests close to trees. Reproductive success is further reduced in high predation risk areas because more nests are constructed in sandy substrates where clutch success is reduced compared to incubation in more dense substrates. Where predators are a significant source of mortality, prey may use indirect methods, such as chemical recognition, to avoid encounters. Nesting turtles did not avoid areas where fox odour was present, suggesting that they assess predation pressure from foxes by other mechanisms, such as visual recognition. However, an innate response occurs to the odour of a once common predator on the Murray River, the eastern quoll (Dasyurus viverrinus), whereby turtles recognise and avoid nesting in areas where quoll odour is present. Therefore nesting turtles show a similar avoidance response to two different predators, using different mechanisms of detection. Similarly, predation risk may influence hatching times and nest emergence. The rate of embryonic development of E. macquarii may increase or eggs may hatch early so that the clutch hatches synchronously, thereby reducing the risk of predation through group emergence from the nest. Emydura macquarii reach densities of over 100 turtles.ha-1, with the majority of the population consisting of sexually mature individuals. Emydura macquarii has a Type III survival curve where mortality is extremely high in the egg stage (93% nest predation), remaining high over the hatchling stage (minimum survival rate- 10%), but decreasing rapidly throughout the juvenile stage (~70% juvenile survival). Adult survival is extremely high, with greater than 95% of adults surviving each year. Foxes through nest predation cause most mortality but a small proportion (~3%) of nesting adult females are killed by foxes each year. A removal program evaluated the impact of foxes. In 1996, fox numbers were monitored around four lagoons by spotlighting and non-toxic bait uptake. Foxes were removed from around two of the lagoons throughout 1997 and 1998, using spotlight shooting and 1080 bait poisoning. Fox numbers were continually monitored around all four lagoons during the study. Nest predation rates remained around 90% in all sites where foxes were present, but fell to less than 50% when foxes were removed. At the same time, predation on nesting female turtles was eliminated where foxes were removed. Demographic models using staged based survival schedules, together with growth and fecundity values for E. macquarii show a decline of 4% per year in these populations. Elasticity analyses shows that survival of adult female E. macquarii has the major influence on population stability and a reduction of nest predation alone is unlikely to address the population decline. Management options, such as reducing foxes prior to nesting around key lagoons, will stabilise the population decline, and eliminating foxes completely from certain areas with high dispersal potential, will promote recruitment of juvenile E. macquarii.
|
3 |
Assessing the Effects of Sea-Level Rise on Piping Plover (Charadrius Melodus) Nesting Habitat, and the Ecology of a Key Mammalian Shorebird Predator, on Assateague IslandGieder, Katherina Dominique 02 September 2015 (has links)
The piping plover (Charadrius melodus) is a federally-listed shorebird that nests on barrier islands along the U.S. Atlantic Coast and is highly vulnerable to habitat change and predation. We have addressed these two threats by 1) developing and implementing a linked model system that predicts future change to piping plover habitat resulting from sea-level rise and beach management efforts by joining dynamic models of sea-level rise, shoreline change, island geomorphology and piping plover nest habitat suitability, and 2) quantifying occupancy and movement of the red fox (Vulpes vulpes), a key shorebird predator at Assateague Island, Maryland and Virginia. We constructed and tested a model that links changes in geomorphological characteristics to piping plover nesting habitat suitability. We then linked this model to larger scale shoreline change resulting from sea level rise and storms. Using this linked model to forecast future sea-level rise and beach management efforts, we found that modest sea-level rise rates (3 mm and 4.1 mm/yr; similar to current rates) may increase suitable piping plover nesting habitat area in 50-100 years and some beach management strategies (beach nourishment and artificial dune modifications) also influence habitat availability. Our development and implementation of this tool to predict change in piping plover habitat suitability provides a vital starting point for predicting how plover nesting habitat will change in a context of planned human modifications intended to address climate change-related threats. Our findings regarding red fox occupancy and movement complement the use of this model for planning future management actions by providing vital information on the effects of certain predator management activities and habitat use of a key mammalian predator, the red fox, for shorebirds along the U.S. Atlantic Coast. Overall, we found that 1) red fox occupancy was strongly tied to eastern cottontail (Sylvilagus floridanus) trap success, increasing sharply with increased eastern cottontail trap success, 2) red fox occupancy did not change in response to an intensive eradication program, and 3) red foxes in our study area generally moved little between camera stations spaced 300 m from each other, but may move large distances (> 6km) at times, likely to occupy new territory available after lethal control efforts. Our findings have important ramifications for the sustainability of long-term predator removal programs and our understanding of future habitat change on the red fox. For example how vegetation changes affect eastern cottontails, how resulting fluctuations in eastern cottontails affect red fox occupancy, and how consequential changes in red fox occupancy affect plover breeding productivity. Our predictive model combined with these predator findings will allow wildlife managers to better plan and implement effective management actions for piping plovers in response to the multiple stressors of SLR-induced habitat change and predation. / Ph. D.
|
4 |
Pathogen Screening for Possible Causes of Meningitis/Encephalitis in Wild Carnivores From Saxony-AnhaltHöche, Jennifer, House, Robert Valerio, Heinrich, Anja, Schliephake, Annette, Albrecht, Kerstin, Pfeffer, Martin, Ellenberger, Christin 12 October 2023 (has links)
Inflammation in meninges and/or brain is regularly noticed in red foxes and other wild
carnivores during rabies control programs. Despite negative rabies virus (RABV) results,
the etiologies of these cases remain unknown. Thus, the aim of this study was to provide
an overview of the occurrence of pathogens that may cause diseases in the brains of
wild carnivores and pose a risk to humans and other animals. In addition to RABV and
canine distemper virus (CDV), a variety of pathogens, including members of Flaviviridae,
Bornaviridae, Herpesviridae, Circoviridae, as well as bacteria and parasites can also
cause brain lesions. In 2016 and 2017, brain samples of 1,124 wild carnivores were
examined by direct fluorescent antibody test for RABV as well as (reverse-transcriptase)
quantitative polymerase chain reaction (PCR) for the presence of CDV as part of a
monitoring program in Saxony-Anhalt, Germany. Here, we applied similar methods to
specifically detect suid herpesvirus 1 (SuHV-1), West Nile virus (WNV), Borna disease
virus 1 (BoDV-1), canid alphaherpesvirus 1 (CaHV-1), canine parvovirus type 2 (CPV-2),
fox circovirus (FoxCV), and Neospora caninum (N. caninum). Further, bacteriogical
examination for the existence of Listeria monocytogenes (L. monocytogenes) and
immunohistochemistry of selected cases to detect Toxoplasma gondii (T. gondii) antigen
were performed. Of all pathogens studied, CDV was found most frequently (31.05%),
followed by FoxCV (6.80%), CPV-2 (6.41%), T. gondii (4/15; 26.67%), nematode larvae
(1.51%), L. monocytogenes (0.3%), and various other bacterial pathogens (1.42%). In 68
of these cases (6.05%), multiple pathogen combinations were present simultaneously.
However, RABV, WNV, BoDV-1, SuHV-1, CaHV-1, and N. caninum were not detected.
The majority of the histopathological changes in 440 animals were inflammation
(320/440; 72.73%), predominantly non-suppurative in character (280/320; 87.50%), and
in many cases in combination with gliosis, satellitosis, neuronophagia, neuronal necrosis,
and/or vacuolization/demyelination, or in single cases with malacia. Thus, it could be
shown that wild carnivores in Saxony-Anhalt are carriers mainly for CDV and sometimes
also for other, partly zoonotic pathogens. Therefore, the existing monitoring program
should be expanded to assess the spill-over risk from wild carnivores to humans and
other animals and to demonstrate the role of wild carnivores in the epidemiology of these
zoonotic pathogens.
|
Page generated in 0.3892 seconds