231 |
Reflexo das flutuações macroeconômicas para a qualidade do crédito concedido a pessoas jurídicas : estudo de generalização de redes neuraisGonçalves, Claudio Freitas January 2002 (has links)
Made available in DSpace on 2014-06-12T17:21:50Z (GMT). No. of bitstreams: 2
arquivo6124_1.pdf: 1155566 bytes, checksum: 4ee9248af97b1901efbc25ffc40ea595 (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2002 / Investiga a adequabilidade da utilização de uma classe especial de sistemas adaptativos as redes neurais artificiais na modelagem do comportamento da inadimplência em face das flutuações macroeconômicas. Os saldos em atraso para sete diferentes categorias de empréstimos concedidos a pessoas jurídicas são modelados por meio de redes neurais. As estimativas obtidas são comparadas àquelas observadas pela aplicação de um modelo econométrico tradicional, baseado em regressão linear múltipla.
O estudo começa por percorrer a história econômica brasileira dos últimos 50 anos para buscar entender a evolução do crédito no período e suas relações com o ambiente macroeconômico.
Para permitir a abordagem da metodologia empregada faz-se uma revisão da literatura sobre redes neurais artificiais, apontando vantagens e desvantagens de sua utilização frente aos métodos econométricos tradicionais. Realiza estudo empírico comparativo das duas metodologias apresentadas e conclui pela viabilidade da utilização das redes neurais, as quais apresentam resultados, para a maior parte dos casos estudados, superiores aos obtidos com o modelo de regressão linear na modelagem do comportamento dos créditos em atraso
|
232 |
q-Gaussians for pattern recognitionSTOSIC, Dusan 01 March 2016 (has links)
Submitted by Isaac Francisco de Souza Dias (isaac.souzadias@ufpe.br) on 2016-07-13T19:23:52Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Dusan Stosic - dissertacao de mestrado.pdf: 6434406 bytes, checksum: db312999879f1c3ebb1795ce764a272e (MD5) / Made available in DSpace on 2016-07-13T19:23:52Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Dusan Stosic - dissertacao de mestrado.pdf: 6434406 bytes, checksum: db312999879f1c3ebb1795ce764a272e (MD5)
Previous issue date: 2016-03-01 / CAPES / Pattern recognition plays an important role for solving many problems in our everyday lives: from simple tasks such as reading texts to more complex ones like driving cars. Subconsciously, the recognition of patterns is instantaneous and an innate ability to every human. However, programming (or “teaching”) a machine how to do the same can present an incredibly difficult task. There are many situations where irrelevant or misleading patterns, poorly represented classes, and complex decision boundaries make recognition very hard, or even impossible by current standards. Important contributions to the field of pattern recognition have been attained through the adoption of methods of statistical mechanics, which has paved the road for much of the research done in academia and industry, ranging from the revival of connectionism to modern day deep learning. Yet traditional statistical mechanics is not universal and has a limited domain of applicability - outside this domain it can make wrong predictions. Non-extensive statistical mechanics has recently emerged to cover a variety of anomalous situations that cannot be described within standard Boltzmann-Gibbs theory, such as non-ergodic systems characterized by long-range interactions, or long-term memories. The literature on pattern recognition is vast, and scattered with applications of non-extensive statistical mechanics. However, most of this work has been done using non-extensive entropy, and little can be found on practical applications of other non-extensive constructs. In particular, non-extensive entropy is widely used to improve segmentation of images that possess strongly correlated patterns, while only a small number of works employ concepts other than entropy for solving similar recognition tasks. The main goal of this dissertation is to expand applications of non-extensive distributions, namely the q-Gaussian, in pattern recognition. We present ourcontributions in the form of two (published) articles where practical uses of q-Gaussians are explored in neural networks. The first paper introduces q Gaussian transfer functions to improve classification of random neural networks, and the second paper extends this work to ensembles which involves combining a set of such classifiers via majority voting. / Reconhecimento de padrões tem um papel importante na solução de diversos problemas no nosso quotidiano: a partir de tarefas simples como ler textos, até as mais complexas como dirigir carros. Inconscientemente, o reconhecimento de padrões pelo cérebro é instantâneo, representando uma habilidade inata de cada ser humano. No entanto, programar (ou “ensinar”) uma máquina para fazer o mesmo pode se tornar uma tarefa extremamente difícil. Há muitas situações onde padrões irrelevantes ou enganosos, classes mal representadas, ou bordas de decisões complexas, tornam o reconhecimento muito difícil, ou mesmo impossível pelos padrões atuais. Diversas contribuições importantes na área de reconhecimento de padrões foram alcançadas através da aplicação de métodos provenientes da mecânica estatística, que estimularam uma grande parte da pesquisa conduzida na academia bem como na indústria, desde o renascimento de conexionismo até o moderno conceito de “deep learning”. No entanto, a mecânica estatística tradicional não é universal e tem um domínio de aplicação limitado - fora deste domínio ela pode fazer previsões erradas. A mecânica estatística não-extensiva surgiu recentemente para atender uma variedade de situações anômalas que não podem ser descritas de forma adequada com a teoria de Boltzmann-Gibbs, tais como sistemas não-ergódicos, caracterizadas por interações de longo alcance, ou memórias de longo prazo. A literatura sobre reconhecimento de padrões é vasta, e dispersa com aplicações da mecânica estatística não-extensiva. No entanto, a maioria destes trabalhos utilizam a entropia não-extensiva, e existem poucas aplicações práticas de outros conceitos não-extensivos. Em particular, a entropia não extensiva é amplamente usada para aperfeiçoar segmentação de imagens que possuem padrões fortemente correlacionados, enquanto apenas um pequeno número de trabalhos empregam outros conceitos não-extensivos para resolver tarefas semelhantes. O objetivo principal desta dissertação é expandir aplicações de distribuições não-extensivas, como a q-Gaussiana, em reconhecimento de padrões. Nos apresentamos as nossas contribuições no formato de dois artigos (publicados) onde exploramos usos práticos da q-Gaussiana em redes neurais. O primeiro artigo introduz funções de transferência baseados na q-Gaussiana para aperfeiçoar a classificação de redes neurais aleatórias, e o segundo artigo estende este trabalho para ensembles, onde um conjunto de tais classificadores são combinados através de votação por maioria.
|
233 |
Modelo de rede neural crescente de aprendizagem por reforçoVIEIRA, Davi Carnaúba de Lima 03 March 2016 (has links)
Submitted by Pedro Barros (pedro.silvabarros@ufpe.br) on 2018-08-03T18:32:40Z
No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
TESE Davi Carnaíba de Lima Vieira.pdf: 2812278 bytes, checksum: 49475e006f9c1cb1a583b085a286ad3f (MD5) / Approved for entry into archive by Alice Araujo (alice.caraujo@ufpe.br) on 2018-08-09T17:13:59Z (GMT) No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
TESE Davi Carnaíba de Lima Vieira.pdf: 2812278 bytes, checksum: 49475e006f9c1cb1a583b085a286ad3f (MD5) / Made available in DSpace on 2018-08-09T17:13:59Z (GMT). No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
TESE Davi Carnaíba de Lima Vieira.pdf: 2812278 bytes, checksum: 49475e006f9c1cb1a583b085a286ad3f (MD5)
Previous issue date: 2016-03-03 / CAPES / Os algoritmos da Aprendizagem por Reforço (AR) têm sido amplamente utilizados para a construção de agentes autônomos. Inspirada no comportamento da aprendizagem animal, a AR é um paradigma que serve como base para algoritmos que aprendem por tentativa e erro. Apesar da sua popularidade e sua sólida base matemática e garantia teórica de convergência para uma solução ótima, a AR apresenta restrições de aplicação em tarefas em que o espaço de estados é muito grande. Por meio do agrupamento de estados similares é possível reduzir o tamanho do espaço de estados. Uma vez reduzido, o problema pode ser resolvido utilizando os algoritmos tradicionais da AR. A principal questão que se coloca aqui é como efetuar a agregação, de tal modo que, por um lado, se possa obter uma “boa” representação do espaço de estados, e pelo outro lado, o desempenho do modelo não degrade. Este é um dos grandes desafios da AR. Esta tese propõe agrupar estados similares, por meio do uso do mapa auto-organizável de Fritzke, como forma de reduzir o espaço de estados. A maior parte das pesquisas que envolvem o uso de algoritmos que discretizam o espaço de estados busca aprimorar o momento certo para a partição do espaço de estados, onde particionar e quando parar, enquanto os algoritmos AR permanecem inalterados. Esses trabalhos em geral resultam em algoritmos que não convergem em determinados problemas ou que possuem uma capacidade de aprendizagem “fraca”. O presente trabalho contribui mostrando a fragilidade destes algoritmos ao mesmo tempo em que apresenta uma solução eficaz para o problema. Esta tese compara o algoritmo proposto com quatro algoritmos AR chamados: Tile Coding (TC), Temporal Difference Adaptive Vector Quantification (TD-AVQ), Q(λ) com Discretização Uniforme (Q(λ)-DU) e Interpolating Growing Neural Gas Q-learning (IGNG-Q). Os experimentos mostram que o algoritmo proposto foi capaz de encontrar a solução dos cinco ambientes de teste envolvidos. Em comparação com o algoritmo TC, o algoritmo proposto foi capaz de proporcionar uma redução no uso da memória de 88%, 87%, 98% e 97% nos ambientes Continuous Maze, Slow Puddle World, Mountain Car e Acrobot, respectivamente. No teste, o algoritmo proposto foi o único capaz de produzir uma política utilizável nos ambientes Continuous Maze e Slow Puddle World. O presente trabalho também mostra que o algoritmo n-step Temporal Difference with Elegibility Traces (TD(nλ)) é mais indicado para o uso em ambientes discretizados que o Q(λ). O uso do algoritmo proposto com Discretização Uniforme (DU) foi capaz de mostrar convergência em problemas onde o Q(λ) não conseguiu. O produto final desta tese é um algoritmo robusto capaz de encontrar em tempo hábil uma solução para todos os ambientes de teste envolvidos. / Reinforcement Learning (RL) algorithms has been widely used for the construction of autonomous agents. Inspired by the behavior of animal learning, RL is a paradigm that serves as basis for algorithms that learn by trial and error. Despite its popularity, solid mathematical foundation and theoretical guarantee of convergence to an optimal solution, RL have applicability constraints on tasks where the state space is too large. By aggregating similar states one can reduce the state space size. Once reduced, the problem can be solved using traditional RL algorithms. The main question that arises here is how to realize the aggregation, so on the one hand, you can get a “good” representation of the state space, and on the other hand, the model performance does not degrade. This is one of the challenges of RL. This thesis proposes aggregation of similar states, through the use of Fritzke’s selforganizing map, in order to reduce the state space. Most research involving the use of algorithms that discretize the state space seek to improve the right time for the partition of the state space, where to partition and when to stop, while the RL algorithms remains unchanged. These works often result in algorithms that do not converge on certain problems or have a “weak” learning capacity. This work contributes showing the fragility of these algorithms while presents an effective solution to the problem. This thesis compares the proposed algorithm with four RL algorithms namely: Tile Coding (TC), Temporal Difference Adaptive Vector Quantization (TD-AVQ), Uniform Discretization (DU) and Interpolating Growing Neural Gas Q-learning (IGNG-Q). The experiments show that the proposed algorithm was able to find the solution on five testbed environments. Compared with TC, the proposed algorithm was able to provide a reduction in memory usage of 88%, 87%, 98% and 97% in the environments Continuous Maze, Slow Puddle World, Mountain Car and Acrobot respectively. In the test, the proposed algorithm was the only capable to found an solution for the environments Continuous Maze and Slow Puddle World. This thesis also shows that the RL algorithm proposed is more suitable for the use in discretized environments than Q(λ). The application of TD(nλ) with DU was able to show convergence in problems where Q(λ) failed. The final product of this thesis is a robust algorithm able to find in time a solution for all specified test environments.
|
234 |
Treinamento de Redes Perceptron Usando Janelas DinâmicasFASSARELA, M. S. 21 December 2009 (has links)
Made available in DSpace on 2018-08-02T00:00:48Z (GMT). No. of bitstreams: 1
tese_2871_DissertacaoMestradoMarceloSouzaFassarella.pdf: 4412674 bytes, checksum: b98757b8830dc327c5ca5578387c8eaa (MD5)
Previous issue date: 2009-12-21 / Neste trabalho apresentamos as redes neurais e o problema envolvendo o
dilema bias-variância. Propomos o método da Janela a ser inserido no treinamento
de redes supervisionadas com conjuntos de dados ruidosos. O método
possui uma característica intrínseca de função regularizadora, já que procura
eliminar ruídos durante a etapa de treinamento, reduzindo a in uência destes
no ajuste dos pesos da rede. Implementamos e analisamos o método nas
redes lógicas adaptivas (ALN) e nas redes perceptrons de múltiplas camadas
(MLP). Por último, testamos a rede em aplicações de aproximação de
funções, ltragem adaptiva e previsão de séries temporais.
|
235 |
UTILIZAÇÃO DE REDES NEURAIS ARTIFICIAIS EM INVENTÁRIO DE FLORESTAS COMERCIAISCAMPOS, B. P. F. 08 December 2014 (has links)
Made available in DSpace on 2018-08-01T22:35:54Z (GMT). No. of bitstreams: 1
tese_8439_Dissertação Bráulio.pdf: 4055991 bytes, checksum: 41feb811225317167d230bfc40a42347 (MD5)
Previous issue date: 2014-12-08 / O objetivo deste trabalho foi deanalisar o desempenho das redes neurais artificiais (RNA) em obter estimativas de variáveis dendrométricas de eucalipto e pinus em diferentes condições de crescimento, visando analisar sua capacidade de aprendizado e generalização em estimar variáveis comumente utilizadas em inventário de florestas comerciais, sendo estruturado em três capítulos. O capítulo I consiste em analisar a capacidade de uma RNA em estimar a altura total de árvores de diferentes espécies em diferentes condições de crescimento e comparar os resultados com modelos comumente utilizados por empresas florestais. Para isso, foram usados dados de altura total e diâmetro a 1,30 m de altura de uma amostra da população e de informações cadastrais como idade, local, fazenda, idade, gênero e espaçamento.O capítulo 2 visa estimar o volume de árvores de diferentes espécies e condições de crescimento por meio de redes neurais artificiais, comparando os resultados com um modelo comumente utilizado por empresas florestais. Para tanto, foram obtidos dados de cubagem rigorosa de amostra de eucalipto e pinus, coletados em diferentes condições de crescimento, formando vários estratos com amostras representativas, sendo base fundamental para analisar a capacidade de aprendizagem e generalização de uma RNA em estimar variáveis precisas e exatas de uma população heterogênea. Por fim, o capitulo III tem o objetivo de analisar a capacidade de uma RNA em descrever o perfil do fuste, estimando o diâmetro em diferentes posições ao longo do tronco, de árvores de diferentes espécies em diferentes condições de crescimento, e comparar seu desempenho com modelos comumente utilizados em por empresas florestais. Os dados utilizados foram referentes à cubagem rigorosa de árvores de eucalipto e pinus, coletados em diferentes condições de crescimento, formando vários estratos com amostras representativas, sendo base fundamental para analisar a capacidade de aprendizagem e generalização de uma RNA em descrever o perfil do fuste de forma precisa e exata de uma população heterogênea. Para gerar as estimativas das variáveis deste estudo foi utilizado o sistema livreNeuroForest3.0. Diante do exposto, o uso da inteligência artificial por meio de redes neurais artificiais se mostrou eficaz e
eficiente, com capacidade de assimilação e generalização dos dados de diferentes espécies, podendo ser recomendadasua utilização em inventário de florestas comerciais, apresentando excelentes resultados.
Palavras-chave: Inventário Florestal,Manejo Florestal,Redes Neurais Artificiais.
|
236 |
AVALIAÇÃO E SELEÇÃO DE VARIÁVEIS PREDITORAS NA ESTIMATIVA DA DENSIDADE DA MADEIRA DE EUCALIPTOLOPES, I. L. E. 28 February 2018 (has links)
Made available in DSpace on 2018-08-01T22:56:05Z (GMT). No. of bitstreams: 1
tese_11767_Dissertação ISÁIRA 2017-Final.pdf: 2017494 bytes, checksum: 0a2d580e3699d6daa314f3acde92da7a (MD5)
Previous issue date: 2018-02-28 / Este trabalho teve como objetivo avaliar e selecionar as variáveis preditoras mais relevantes para estimação da densidade básica da madeira de árvores de eucalipto. Foram avaliadas as variáveis qualitativas obtidas em informações cadastrais (clone, sub-região e relevo), quantitativas obtidas de Inventário Florestal Contínuo IFC (volume total com casca, diâmetro a altura do peito e altura total) e quantitativas referentes às informações climáticas da área em estudo (velocidade do vento, temperatura média, precipitação total média, déficit de pressão de vapor, déficit hídrico e altitude), para a estimação da densidade da madeira de 386 árvores. Os métodos de avaliação e seleção de variáveis utilizados foram: força bruta com aplicação de Redes Neurais Artificiais (RNA) testando todas as possíveis combinações entre as variáveis; algoritmo de Garson e Random Forest, que quantificam a importância individual das variáveis preditoras. A classificação das variáveis preditoras variou entre os métodos, o que pode ser atribuído às suas diferentes abordagens matemáticas. A variável clone destacou-se das demais, em todos os métodos. Para o método da força bruta, a simplificação da RNA com o uso de 5 variáveis resultou em maior grau de exatidão das estimativas de densidade básica, em que a combinação ótima consistiu nas variáveis clone, idade, volume total com casca, temperatura média e déficit hídrico. Quanto ao algoritmo de Garson, as 5 variáveis com maior valor de importância foram: clone, sub-região, relevo, idade e déficit hídrico. Já o Random Forest, apresentou dentre as 5 variáveis com maior importância, o clone, idade, altura total, precipitação total média e temperatura média. Entretanto, diante do esforço computacional para aplicação do método da força bruta, uma alternativa é o uso do Random forest ou algoritmo de Garson, visto que as variáveis selecionadas nestes métodos também proporcionaram boas estimativas de densidade básica da madeira.
Palavras-chave: Random forest, algoritmo de Garson, Redes Neurais Artificiais, madeira, mensuração florestal.
|
237 |
Grupos neurais e sistemas nebulosos : aplicação a navegação autonomaFabro, João Alberto 27 February 1996 (has links)
Orientador: Fernando Antonio Campos Gomide / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica / Made available in DSpace on 2018-07-21T03:43:02Z (GMT). No. of bitstreams: 1
Fabro_JoaoAlberto_M.pdf: 3614777 bytes, checksum: 2eed999b8ccd3a1573c5ec1bd7c10fde (MD5)
Previous issue date: 1996 / Resumo: Neste trabalho é apresentada uma arquitetura de controle para navegação de veículos autônomos, usando auto-organização e técnicas de redes neurais e lógica nebulosa. O objetivo é encontrar alvos posicionados em um ambiente desconhecido, sem entretanto colidir com obstáculos. A arquitetura faz uso da teoria dos grupos neurais, de redes neurais e sistemas nebulosos, para o aprendizado de habilidades de navegação. Sensores neurais/nebulosos são utilizados para fornecer informações que possibilitem aos campos adaptativos ativarem ações nebulosas em resposta às características encontradas no ambiente. Ou seja, o sistema de controle desenvolve um comportamento adaptativo através das interações entre o veículo e o ambiente, e de estratégias de aprendizado. Resultados de simulação mostram que o sistema apresenta capacidade de aprender estratégias de navegação que proporcionam um melhor desempenho quando comparadas com esquemas alternativos utilizados para a solução do mesmo problema / Abstract: In this work a seIf organizing, neurofuzzy control architecture for a class of autonomous vehicles' navigation is presented. The aim is to find target positions, without colliding with obstacles of an unknown environment. The architecture uses neural networks and fuzzy systems together with the theory of neuronal group seIection to learn navigation skills. Neurofuzzy sensor information builds up adaptive fieIds whose intensity triggers fuzzy control actions in response to the environment characteristics. That is, the control system deveIops adaptive behavior from the interactions between the vehicle, the environment,and Iearning strategies. Simulation results show that the control system is able to efficiently learn navigation strategies that perform better when compared with altemative schemes / Mestrado / Mestre em Engenharia Elétrica
|
238 |
Previsão de carga no periodo de demanda de ponta utilizando redes neurais artificiaisLima, Wagner da Silva 09 September 1996 (has links)
Orientador: Takaaki Ohishi / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica / Made available in DSpace on 2018-07-21T16:28:49Z (GMT). No. of bitstreams: 1
Lima_WagnerdaSilva_M.pdf: 5677949 bytes, checksum: 437946d8fba0db82e7658308303d8909 (MD5)
Previous issue date: 1996 / Resumo: A habilidade de prever precisamente a carga do sistema é vital ao planejamento e operação eficiente, econômica e segura de um sistema de potência. Este trabalho investiga a utilização de redes neurais artificiais para previsão de carga no período de demanda de ponta a curto e curtíssimo prazos. Dois algoritmos de previsão são testados e avaliados com relação a precisão e esforço computacional. Uma análise da influência de dados climáticos sobre a carga é realizada. Procurou-se encontrar uma arquitetura compacta e robusta que pudesse levar em consideração a sazonalidade da carga anual, sem comprometer a precisão da previsão. o primeiro algoritmo (MWS) utiliza os dados dos últimos dez dias típicos para previsão do perfil de maneira estática e dinâmica. O segundo algoritmo (AAS) utiliza os dados históricos do ano anterior para previsão do ano vigente (previsão estática e dinâmica). O algoritmo MWS com previsão dinâmica obteve os melhores resultados para os horizontes de dez minutos (curtíssimo prazo) à frente, uma e 24 horas à frente. Várias dificuldades foram encontradas para considerar a entrada e saída do horário de verão. Apenas a variável temperatura máxima foi a mais significativa em termos de variáveis climáticas. A escassez de dados climáticos mais consistentes no final da tarde impediram uma avaliação mais completa da influência das condições climáticas na previsão. Os resultados obtidos demonstraram um bom desempenho das redes neurais com erro médio percentual absoluto em tomo de 2% para os três horizontes previstos / Abstract: The ability to accurately predict the system load is vital to the efficient, economic, and secure operation and planning of a power system. This work investigates the use of artificial neural networks for short and very short-term load peak demand forecasting. Two forecasting algorithms are tested and evaluated based on their precision and computational load. The influence of weather conditions on load demand is investigated. We sought a robust and compact topology which considers annual load sazonality, in order to preserve the forecast precision. The algorithm (MWS) uses data from the last 10 typical days to forecast the load peak demand profile with static and dynamic methods. The second algorithm (AAS) uses historical data from the previous year's load and weather database to forecast current year using static and dynamical methods. The MWS algorithm with dynamic forecasting yields the best 1000peak demand forecasting results for 10 minutes (very short-term forecasting), 1 and 24 hours ahead. The maximum temperature is the most significant weather variable. Scarce consistent evening weather data prevent a more complete evaluation of the influence of weather conditions on load forecasting. -The results show good performance of neural networks with around 2% mean percent absolute error for forecasts on the three horizons evaluated. / Mestrado / Mestre em Engenharia Elétrica
|
239 |
Uma aplicação de redes neurais artificiais no processamento digital de sinais eletromiograficos da musculatura mastigatoriaAlmeida, Denise Aparecida Martinelli Marques de 09 February 1998 (has links)
Orientadores: Ivana A. Gil, Fausto Berzin / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba / Made available in DSpace on 2018-07-23T10:18:59Z (GMT). No. of bitstreams: 1
Almeida_DeniseAparecidaMartinelliMarquesde_M.pdf: 2862101 bytes, checksum: 66f970741647c1d36edd710e1203de04 (MD5)
Previous issue date: 1998 / Resumo: A determinação de um padrão para a atividade elétrica dos músculos mastigatórios é controversa, pois a variabilidade dos métodos de registro e as características da amostra tornam difícil a obtenção de dados eletromiográficos precisos. O uso de uma técnica de Rede Neural Artificial no processamento dos sinais eletromiográficos pode ser um importante instrumento para otimizar essa metodologia. O objetivo desse estudo foi investigar a possível existência de um padrão na atividade dos músculos temporais e masséteres de voluntários considerados clinicamente normais. Foram selecionadas 12 voluntárias, com idades entre 17 e 21 anos, que apresentavam ausência de sinais e sintomas de Desordens Craniomandibulares. Os sinais eletromiográficos foram captados através do eletromiógrafo Viking 11. As voluntárias foram instruídas a assumirem 3 situações mandibulares diferentes: 1. Posição de REPOUSO MANDIBULAR (R), 2. Mordida ISOTÔNICA BILATERAL (IT), e Mordida ISOMÉTRICA BILATERAL (1M). O eletromiógrafo foi calibrado numa amplitude de 200 microvolts e num tempo de 200 milisegundos. Os sinais eletromiográficos foram analisados através de um programa de Redes Neurais Artificiais (RNA), tipo Multi-Layer Perceptron, em 2 etapas: a etapa de treinamento e a etapa de testes. Os resultados da etapa de treinamento da RNA mostraram que foram atingidos os valores previstos para as três situações mandibulares
estudadas. Os resultados da etapa de teste revelaram a capacidade da RNA em reconhecer os três diferentes tipos de situações mandibulares com algum grau de acuracidade. Concluiu-se que as Redes Neurais
Artificiais podem ser utilizadas como importante ferramenta no estudo da atividade elétrica muscular, todavia a implementação das Redes Neurais Artificiais no estudo dos sinais biomédicos ainda necessita de maior pesquisa / Abstract: An electrical activity pattern for the masticatory muscle is controvertible, because the variability of record methods, different electromyographic equipment, electrical and electromagnetic interference, selection of electrodes and volunteers, to try for obtainment severa I results, that beco me difficult establishment of real EMG data, able to represent normal electrical activity. The possibility of use an Artificial NeLiral Network (ANN) in digital processing correspond an important instrument to optimize this methodology. The aim of this study was to investigate the possible existence of a pattern in muscular activity of I Temporalis and Masseter muscle in clinically normal volunteers by using the digital processing of electromyographic signals ( Artificial Neural Network ). We selected randomly 12 female voluntears, aging 17 -21 years, with no signals and symptoms of craniomandibular disorders. The electromyographic signals was obtained by surface Beeckman electrodes, using Nicolet Electromyograph Viking 11. Ali volunteers were instructed to the obtainment three types of mandibular situation: Rest Mandibular Position ( R ), Bilateral Isotonic Bite ( IT ), Bilateral Isometric Bite ( 1M ). 200 miliseconds for time. The electromyographic signals was stored in flexible disc 3311." in ASC 11 language, transformated in DOS language by SISDIN program and that temporal arrangement allowed the analysis in Artificial Neural Network ( ANN ) program, type Multi-Layer Perceptron MLP ( Copyright @ Rational Systems, Inc, 1990-1991, Version 1.4 ), with three layers, in supervised learning; using back-propagation
algorithm, with dual exit. The analysis of electromiographic signals in ANN was divided into 2 stages: training stage and test stage. The training of ANN was realized with archives of 3 and 6 volunteers for each one of 4 muscles involved, and in the test stage we used the volunteers was not submitted to the training stage. The results of training stage of ANN showed that was reached the anticipated value for the 3 mandibular situation studied for 3 and 6 volunteers. The result of the test stage I showed the capacity of ANN by recognize the 3 different types of mandibular situation, with some degree of accuracy, and the Rest Mandibular Position was the most distinguished of the others mandibular situations. Apparently due muscle and anatomical variable, an increased sample would permit to ANN a bigger capacity of generalization ( learning ), improving the recognition of muscles activities in the bilateral isotonic and isometric bites situations. We concluded that ANN will can be used how an important tool in study of electrical activity of muscle, as well as in differential diagnosis of muscles pathologies. However, the implementation of the ANN in study of biomedical signals, require much more investigation / Mestrado / Fisiologia e Biofisica do Sistema Estomatognatico / Mestre em Ciências
|
240 |
Controle neural para marcha lenta de veiculosMonnerat Junior, Pedro Henrique 22 February 2000 (has links)
Orientador: Marcio Luiz de Andrade Netto / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-07-26T04:43:04Z (GMT). No. of bitstreams: 1
MonneratJunior_PedroHenrique_M.pdf: 3286266 bytes, checksum: ef419cb4869efea23fe6fa0429d6c230 (MD5)
Previous issue date: 2000 / Resumo: Para o controle da marcha lenta em motores de automóveis podem ser encontrados diversos modelos matemáticos baseados em técnicas lineares. O motor é um sistema tipicamente não-linear e tais modelos são obtidos por processos de linearização que, em geral, resultam em aproximações pouco realistas para boa parte do espaço de suas variáveis de estado. O presente trabalho busca diminuir este distanciamento da realidade, utilizando um modelo neural do motor obtido por identificação e, por meio deste, treinando um controlador neural para atingir o desempenho desejado em marcha lenta. Todas as etapas são descritas e apresentam-se os resultados obtidos com a implementação do controlador na injeção eletrônica de dois veículos distintos / Abstract: For the automotive Idle Speed Control one can find a number of mathematical models based on linear techniques. The engine is a typical non-linear system and these models are obtained by a linearization process resulting, in general, in a poor aproximation for a large part of its state-space variables. This work tries to reduce the distance ITom reality, using a neural model of the engine obtained by identification and, based on this model, training a neural controller to attain a desired performance for Idle Speed. Every step is described and results are shown for this controller as implemented inside the eletronic fuel injection system of two different vehicles / Mestrado / Mestre em Engenharia Elétrica
|
Page generated in 0.086 seconds