• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterisation of metallurgical reductants on the basis of reactivity

Kok, Herman 19 January 2010 (has links)
Thesis (M.Sc.), Faculty of Engineering (Metallurgy and Materials Engineering), 1996
2

AN OPTIMIZED SOLID-PHASE REDUCTION AND CAPTURE STRATEGY FOR THE STUDY OF REVERSIBLY-OXIDIZED CYSTEINES AND ITS APPLICATION TO METAL TOXICITY

Hitron, John Andrew 01 January 2018 (has links)
The reversible oxidation of cysteine by reactive oxygen species (ROS) is both a mechanism for cellular protein signaling as well as a cause of cellular injury and death through the generation of oxidative stress. The study of cysteine oxidation is complicated by the methodology currently available to isolate and enrich oxidized-cysteine containing proteins. We sought to simplify this process by reducing the time needed to process samples and reducing sample loss and contamination risk. We accomplished this by eliminating precipitation steps needed for the protocol by (a) introducing an in-solution NEM-quenching step prior to reduction and (b) replacing soluble dithiothreitol reductant with a series of newly-developed high-capacity polyacrylamide-based solid-phase reductants that could be easily separated from the lysate through centrifugation. These modifications, collectively called resin-assisted reduction and capture (RARC), reduced the time needed to perform the RAC method from 2-3 days to 4-5 hours, while the overall quality and quantity of previously-oxidized cysteines captured was increased. In order to demonstrate the RARC method’s utility in studying complex cellular oxidants, the optimized methodology was used to study cysteine oxidation caused by the redox-active metals arsenic, cadmium, and chromium. As(III), Cr(VI), and Cd(II) were all found to increase cysteine oxidation significantly, with As(III) and Cd(II) inducing more oxidation than Cr(VI) following a 24-hour exposure to cytotoxic concentrations. Label-free proteomic analysis and western blotting of RARC-isolated oxidized proteins found a high degree of commonality between the proteins oxidized by these metals, with cytoskeletal, translational, stress response, and metabolic proteins all being oxidized. Several previously-unreported redox-active cysteines were also identified. These results indicate that cysteine oxidation by As(III), Cr(VI), and Cd(II) may play a significant role in these metals’ cytotoxicity and demonstrates the utility of the RARC method as a strategy for studying reversible cysteine oxidation by oxidants in oxidative signaling and disease. The RARC method is a simplification and improvement upon the current state of the art which decreases the barrier of entry to studying cysteine oxidation, allowing more researchers to study this modification. We predict that the RARC methodology will be critical in expanding our understanding of reactive cysteines in cellular function and disease.
3

Destruction of chlorinated hydrocarbons by zero-valent zinc and bimetallic zinc reductants in bench-scale investigations

Cushman, Christopher Scott 09 May 2014 (has links)
No description available.

Page generated in 0.0491 seconds