Spelling suggestions: "subject:"definable"" "subject:"indefinable""
1 |
Interpolatory bivariate refinable functions and subdivisionRabarison, Andrianarivo Fabien 03 1900 (has links)
Thesis (MSc (Mathematics))--Stellenbosch University, 2008. / See full text for abstract.
|
2 |
Refinable functions with prescribed values at the integersGavhi, Mpfareleni Rejoyce 03 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: See full text / AFRIKAANSE OPSOMMING: Sien volteks
|
3 |
Vector refinable splines and subdivisionAndriamaro, Miangaly Gaelle 12 1900 (has links)
Thesis (MSc (Mathematics))--Stellenbosch University, 2008. / In this thesis we study a standard example of refinable functions, that is, functions which can be reproduced by the integer shifts of their own dilations. Using the cardinal B-spline as an introductory example, we prove some of its properties, thereby building a basis for a later extension to the vector setting. Defining a subdivision scheme associated to the B-spline refinement mask, we then present the proof of a well-known convergence result.
Subdivision is a powerful tool used in computer-aided geometric design (CAGD) for the generation of curves and surfaces. The basic step of a subdivision algorithm consists of starting with a given set of points, called the initial control points, and creating new points as a linear combination of the previous ones, thereby generating new control points. Under certain conditions, repeated applications of this procedure yields a continuous limit curve. One important goal of this thesis is to study a particular extension of scalar subdivision to matrix subdivision ...
|
4 |
Interpolatory refinement pairs with properties of symmetry and polynomial filling /Gavhi, Mpfareleni Rejoyce. January 2008 (has links)
Thesis (MSc)--University of Stellenbosch, 2008. / Bibliography. Also available via the Internet.
|
5 |
Convergence analysis of symmetric interpolatory subdivision schemesOloungha, Stephane B. 12 1900 (has links)
Thesis (PhD (Mathematics))--University of Stellenbosch, 2010. / Contains bibliography. / ENGLISH ABSTRACT: See full text for summary. / AFRIKAANSE OPSOMMING: Sien volteks vir opsomming
|
6 |
On the analysis of refinable functions with respect to mask factorisation, regularity and corresponding subdivision convergenceDe Wet, Wouter de Vos 12 1900 (has links)
Thesis (PhD (Mathematical Sciences))--University of Stellenbosch, 2007. / We study refinable functions where the dilation factor is not always assumed to be 2. In
our investigation, the role of convolutions and refinable step functions is emphasized as a
framework for understanding various previously published results. Of particular importance
is a class of polynomial factors, which was first introduced for dilation factor 2 by
Berg and Plonka and which we generalise to general integer dilation factors.
We obtain results on the existence of refinable functions corresponding to certain reduced
masks which generalise similar results for dilation factor 2, where our proofs do not
rely on Fourier methods as those in the existing literature do.
We also consider subdivision for general integer dilation factors. In this regard, we extend
previous results of De Villiers on refinable function existence and subdivision convergence
in the case of positive masks from dilation factor 2 to general integer dilation factors.
We also obtain results on the preservation of subdivision convergence, as well as on the
convergence rate of the subdivision algorithm, when generalised Berg-Plonka polynomial
factors are added to the mask symbol.
We obtain sufficient conditions for the occurrence of polynomial sections in refinable
functions and construct families of related refinable functions.
We also obtain results on the regularity of a refinable function in terms of the mask
symbol factorisation. In this regard, we obtain much more general sufficient conditions
than those previously published, while for dilation factor 2, we obtain a characterisation of
refinable functions with a given number of continuous derivatives.
We also study the phenomenon of subsequence convergence in subdivision, which explains
some of the behaviour that we observed in non-convergent subdivision processes
during numerical experimentation. Here we are able to establish different sets of sufficient
conditions for this to occur, with some results similar to standard subdivision convergence,
e.g. that the limit function is refinable. These results provide generalisations of the corresponding
results for subdivision, since subsequence convergence is a generalisation of
subdivision convergence. The nature of this phenomenon is such that the standard subdivision
algorithm can be extended in a trivial manner to allow it to work in instances where
it previously failed.
Lastly, we show how, for masks of length 3, explicit formulas for refinable functions can
be used to calculate the exact values of the refinable function at rational points.
Various examples with accompanying figures are given throughout the text to illustrate
our results.
|
7 |
Polynomial containment in refinement spaces and wavelets based on local projection operatorsMoubandjo, Desiree V. 03 1900 (has links)
Dissertation (PhD)--University of Stellenbosch, 2007. / ENGLISH ABSTRACT: See full text for abstract / AFRIKAANSE OPSOMMING: Sien volteks vir opsomming
|
8 |
Interpolatory refinement pairs with properties of symmetry and polynomial fillingGavhi, Mpfareleni Rejoyce 03 1900 (has links)
Thesis (MSc (Mathematics))--University of Stellenbosch, 2008. / Subdivision techniques have, over the last two decades, developed into a powerful
tool in computer-aided geometric design (CAGD). In some applications it is
required that data be preserved exactly; hence the need for interpolatory subdivision
schemes. In this thesis,we consider the fundamentals of themathematical
analysis of symmetric interpolatory subdivision schemes for curves, also with the
property of polynomial filling up to a given odd degree, in the sense that, if the
initial control point sequence is situated on such a polynomial curve, all the subsequent
subdivision iterates fills up this curve, for it to eventually also become
also the limit curve.
A subdivision scheme is determined by its mask coefficients, which we find
convenient to mathematically describe as a bi-infinite sequnce a with finite support.
This sequence is in one-to-one correspondence with a corresponding Laurent
polynomial A with coefficients given by the mask sequence a. After an introductory
Chapter 1 on notation, basic definitions, and an overview of the thesis,
we proceed in Chapter 2 to separately consider the issues of interpolation,
symmetry and polynomial filling with respect to a subdivision scheme, eventually
leading to a definition of the class Am,n of mask symbols in which all of the
above desired properties are combined.
We proceed in Chapter 3 to deduce an explicit characterization formula for
the classAm,n, in the process also showing that its optimally local member is the
well-known Dubuc–Deslauriers (DD) mask symbol Dm of order m. In fact, an
alternative explicit characterization result appears in recent work by De Villiers
and Hunter, in which the authors characterized mask symbols A ∈Am,n as arbitrary
convex combinations of DD mask symbols. It turns out that Am,m = {Dm},
whereas the class Am,m+1 has one degree of freedom, which we interpret here in
the formof a shape parameter t ∈ R for the resulting subdivision scheme.
In order to investigate the convergence of subdivision schemes associated with mask symbols in Am,n, we first introduce in Chapter 4 the concept of a refinement
pair (a,φ), consisting of a finitely-supported sequence a and a finitelysupported
function φ, where φ is a refinable function in the sense that it can be
expressed as a finite linear combination, as determined by a, of the integer shifts
of its own dilation by factor 2. After presenting proofs of a variety of properties
satisfied by a given refinement pair (a,φ), we next introduce the concept of an
interpolatory refinement pair as one for which the refinable function φ interpolates
the delta sequence at the integers. A fundamental result is then that the existence
of an interpolatory refinement pair (a,φ) guarantees the convergence of
the interpolatory subdivision scheme with subdivision mask a, with limit function
© expressible as a linear combination of the integer shifts of φ, and with all
the subdivision iterates lying on ©.
In Chapter 5, we first present a fundamental result byMicchelli, according to
which interpolatory refinable function existence is obtained for mask symbols in
Am,n if the mask symbol A is strictly positive on the unit circle in complex plane.
After showing that the DD mask symbol Dm satisfies this sufficient property, we
proceed to compute the precise t -interval for such positivity on the unit circle to
occur for the mask symbols A = Am(t |·) ∈Am,m+1. Also, we compare our numerical
results with analogous ones in the literature.
Finally, in Chapter 6, we investigate the regularity of refinable functions φ =
φm(t |·) corresponding to mask symbols Am(t |·). Using a standard result fromthe
literature in which a lower bound on the Hölder continuity exponent of a refinable
function φ is given explicitly in terms of the spectral radius of a matrix obtained
from the corresponding mask sequence a, we compute this lower bound
for selected values of m.
|
9 |
Multivariate refinable functions with emphasis on box splinesVan der Bijl, Rinske 03 1900 (has links)
Thesis (MComm (Mathematics))--Stellenbosch University, 2008. / The general purpose of this thesis is the analysis of multivariate refinement equations, with
focus on the bivariate case. Since box splines are the main prototype of such equations
(just like the cardinal B-splines in the univariate case), we make them our primary subject
of discussion throughout. The first two chapters are indeed about the origin and definition
of box splines, and try to elaborate on them in sufficient detail so as to build on them
in all subsequent chapters, while providing many examples and graphical illustrations to
make precise every aspect regarding box splines that will be mentioned.
Multivariate refinement equations are ones that take on the form
(x) =Xi2Zn
pi (Mx − i), (1)
where is a real-valued function, called a refinable function, on Rn, p = {pi}i2Zn is a
sequence of real numbers, called a refinement mask, and M is an n × n matrix with
integer entries, called a dilation matrix.
It is important to note that any such equation is thus simultaneously determined by all
three of , p and M — and the thesis will try and explain what role each of these plays
in a refinement equation.
In Chapter 3 we discuss the definition of refinement equations in more detail and elaborate
on box splines as our first examples of refinable functions, also showing that one can
actually use them to create even more such functions. Also observing from Chapter iii
iv
2 that box splines demand yet another parameter from us, namely an initial direction
matrix D, we focus on the more general instances of these in Chapter 4, while keeping
the dilation matrix M fixed. Chapter 5 then in turn deals with the matrix M and tries to
generalize some of the results found in Chapter 3 accordingly, keeping the initial direction
matrix fixed.
Having dealt with the refinement equation itself, we subsequently focus our attention on
the support of a (bivariate) refinable function — that is, the part of the xy-grid on which
such a function “lives” — and that of a refinement mask, in Chapter 6, and obtain a few
results that are in a sense introductory to our work in the next chapter.
Next, we move on to discuss one area in which refinable functions are especially applicable,
namely subdivision, which is analyzed in Chapter 7. After giving the basic definitions of
subdivision and subdivision convergence, and investigating the “sum rules” in Section 7.1,
we prove our main subdivision convergence result in Section 7.2. The chapter is concluded
with some examples in Section 7.3.
The thesis is concluded, in Chapter 8, with a number of remarks on what has been done
and issues that are left for future research.
|
10 |
Some choices of moments of refinable function and applicationsZhanlav, Tugal 31 August 2006 (has links) (PDF)
We propose a recursive formula for moments of scaling function and sum rule. It is shown that some quadrature formulae has a higher degree of accuracy under proposed moment condition. On this basis we obtain higher accuracy formula for wavelet expansion coefficients which are needed to start the fast wavelet transform and estimate convergence rate of wavelet approximation and sampling of smooth functions. We also present a direct algorithm for solving refinement equation.
|
Page generated in 0.0627 seconds