• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 8
  • 6
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 48
  • 26
  • 10
  • 10
  • 9
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Strategies for facilitated production of recombinant proteins in escherichia coli

Hedhammar, My January 2005 (has links)
<p>The successful genomic era has resulted in a great demand for efficient production and purification of proteins. The main objective of the work described in this thesis was to develop methods to facilitate recovery of target proteins after recombinant production in Escherichia coli.</p><p>A positively charged purification tag, Z<sub>basic</sub>, has previously been constructed by protein design of a compact three-helix bundle domain, Z. The charged domain was investigated for general use as a fusion partner. All target proteins investigated could be selectively captured by ion-exchange chromatography under conditions excluding adsorption of the majority of Escherichia coli host proteins. A single cation-exchange chromatography step at physiological pH was sufficient to provide Z<sub>basic</sub> fusion proteins of high purity close to homogeneity. Moreover, efficient isolation directly from unclarified <i>Escherichia coli</i> homogenates could also be accomplished using an expanded bed mode. Since the intended use of a recombinant protein sometimes requires removal of the purification tag, a strategy for efficient release of the Z<sub>basic</sub> moiety using an immobilised protease was developed. The protease columns were reusable without any measurable decrease in activity. Moreover, subsequent removal of the released tag, Z<sub>basic</sub>, was effected by adsorption to a second cation-exchanger. </p><p>Using a similar strategy, a purification tag with a negatively charged surface, denoted Z<sub>acid</sub>, was constructed and thoroughly characterised. Contrary to Z<sub>basic</sub>, the negatively charged Z<sub>acid</sub> was highly unstructured in a low conductivity environment. Despite this, all Z<sub>acid</sub> fusion proteins investigated could be efficiently purified from whole cell lysates using anion-exchange chromatography</p><p>Synthesis of polypeptides occurs readily in Escherichia coli providing large amounts of protein in cells of this type, albeit often one finds the recombinant proteins sequestered in inclusion bodies. Therefore, a high throughput method for screening of protein expression was developed. Levels of both soluble and precipitated protein could simultaneously be assessed <i>in vivo</i> by the use of a flow cytometer. </p><p>The positively charged domain, Z<sub>basic</sub>, was shown also to be selective under denaturing conditions, providing the possibility to purify proteins solubilised from inclusion bodies. Finally, a flexible process for solid-phase refolding was developed, using Z<sub>basic</sub> as a reversible linker to the cation-exchanger resin.</p>
42

BAG1 stellt die Bildung funktionaler DJ-1-L166P-Dimere und deren Chaperon-Aktivität wieder her / BAG1 restores formation of functional DJ-1 L166P dimers and DJ-1 chaperone activity

Deeg, Sebastian 25 January 2011 (has links)
No description available.
43

Rekombinantinio žmogaus granulocitų kolonijas stimuliuojančio faktoriaus pasiskirstymas ir renatūracija vandens dvifazėse sistemose, dalyvaujant chelatuotiems metalų jonams / Partitioning and refolding of recombinant human granulocyte-colony stimulating factor in aqueous two-phase systems containing chelated metal ions

Zaveckas, Mindaugas 16 November 2005 (has links)
The contribution of Cys17 and surface-exposed histidine residues in rhG-CSF interaction with Cu(II), Ni(II) and Hg(II) ions chelated by Light Resistant Yellow 2KT-polyethylene glycol derivative was evaluated in aqueous two-phase systems composed of polyethylene glycol (PEG) and dextran. It was determined that His43, His52, His156 and His170 residues are involved in protein interaction with chelated Cu(II) ions. Protein interaction with chelated Ni(II) is governed by His52 and His170 residues, though Cys17 is also involved. The contribution of Cys17 side chain is dominant in the interaction between rhG-CSF and chelated Hg(II) ions. The direct interaction between chelated Hg(II) ions and the –SH group of protein was determined for the first time. Based on the study of the interaction between rhG-CSF and chelated metal ions, rhG-CSF was successfully refolded from inclusion bodies in aqueous two-phase systems PEG-dextran containing chelated Ni(II) or Hg(II) ions for the first time. The refolding of rhG-CSF (C17S) in these systems was more effective compared to that of intact rhG-CSF. The dependence of refolding efficiency of rhG-CSF (C17S) in two-phase systems containing chelated metal ions on the number of histidine mutations was evaluated. It was determined that the refolding efficiency of protein in the systems containing chelated Ni(II) is inversely proportional to the number of histidine mutations. The affinity of purified rhG-CSF (C17S) and its histidine mutants for... [to full text]
44

Expressão e caracterização de proteínas envolvidas na via da quinase mTOR e na divisão celular bacteriana / Expression and characterization of proteins involved in the mTOR kinase pathway and bacterial cell division

Nogueira, Maria Luiza Caldas, 1984- 21 August 2018 (has links)
Orientador: Ana Carolina de Mattos Zeri / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-21T00:57:37Z (GMT). No. of bitstreams: 1 Nogueira_MariaLuizaCaldas_M.pdf: 8261820 bytes, checksum: 7c9ed2193fd77623b3a8beea794eb743 (MD5) Previous issue date: 2012 / Resumo: A mTOR é uma via de sinalização muito conservada que controla o crescimento celular em resposta à presença de nutrientes e fatores de crescimento. A desregulação dessa via em humanos está relacionada a doenças como câncer e diabetes. A quinase TOR é ativada na presença de aminoácidos e recentemente descobriu-se que as pequenas GTPases da família Rag são mediadoras da sinalização por Leucina. Essas GTPases são ancoradas na superfície do lisossomo por meio da interação com um complexo de três proteínas denominado Ragulator. Esse complexo também ancora um braço da via das MAPKs (MEK-ERK) aos lisossomos. O entendimento deste complexo pode nos ajudar a elucidar doenças em que a via da mTOR se encontra desregulada. Neste trabalho obtivemos o complexo Ragulator, através da expressão da proteína p18 em corpos de inclusão e sua renaturação através da adição de suas parceiras Mp1/p14 à diálise. Foram realizados estudos biofísicos com a intenção de caracterização do complexo, entretanto o alto grau de dissociação do mesmo resultou em certa dificuldade para caracterizá-lo completamente. Neste trabalho caracterizamos os agregados formados pela p18 e conseguimos reduzir sua formação através de diálise contendo agente redutor e suas proteínas parceiras. A renaturação da p18 na presença de MP1/p14 favoreceu seu rendimento, indicando a interação entre estas proteínas, porém não foi possível estabilizar o complexo Ragulator O estudo da divisão bacteriana é centralmente dependente de FtsZ, um homólogo procariótico das tubulinas. FtsZ desencadeia a divisão ao formar o "anel Z", uma estrutura supramolecular constituída por polímeros de FtsZ que circunda o interior da célula e funciona como arcabouço do aparato de divisão. A formação do anel Z é regulada por moduladores, proteínas que afetam tanto negativamente como positivamente a capacidade de FtsZ polimerizar-se. A proteína MinC é um inibidor da polimerização de FtsZ, recrutada por MinD para a face interna da membrana plasmática, onde o complexo MinCD exerce sua função. MinCD representa um inibidor sítio-específico da polimerização da FtsZ, previnindo a formação do anel Z nos pólos das células mas permitindo que isto aconteça na região central. A elucidação deste processo seria de grande valia para o desenho racional de inibidores da divisão bacteriana. Neste trabalho, comprovamos a interação entre MinC e FtsZ por Ressonância Magnética Nuclear. Estes proteínas não se encontravam em sua forma monomérica e o alto peso molecular do complexo impossibilitou a identificação dos aminoácidos envolvidos nesta interação, devido a limites da técnica 15NHSQC. No momento, a proteína MinC está sendo expressa em presença de deutério, o que aumenta significativamente o limite da técnica de 15NHSQC. Foram realizados ainda estudos biofísicos com intuito de caracterização da interação / Abstract: The mTOR signaling pathway is a very well conserved pathway that controls cell growth in response to the presence of nutrients and growth factors. Deregulation of this pathway in humans is related to diseases like cancer and diabetes. The TOR kinase is activated in the presence of amino acids and it was recently discovered that the Rag small GTPases family are mediators of signaling by Leucine. These GTPases are anchored on the surface of the lysosome through interactions with a complex of three proteins called Ragulator. This complex also anchors an arm of the pathway of MAPKs (MEK-ERK) to lysosomes. Understanding this can help us to elucidate complex diseases in which the mTOR pathway is upregulated. In this work, the Ragulator complex was obtained through the expression of p18 protein in inclusion bodies and their refolding by adding their partners MP1/p14 to dialysis. Biophysical studies were conducted with the intention of characterizing the complex, however its high degree of dissociation resulted in some difficulty to characterize it completely. In this work we characterized the aggregates formed by p18 and managed reduce its formation by dialysis containing reducing agent and its partner proteins. The p18 renatuation with MP1/p14 improve its yield, indicating interaction among these proteins, however the Ragulator complex wasn't stabilized. The study of bacterial division is centrally dependent on FtsZ, a prokaryotic homologue of tubulin. FtsZ triggers the division to form the "Z ring", a supramolecular structure consisting in FtsZ polymers that surrounds the cell and acts as a frame of the division apparatus. The formation of the Z ring is regulated by modulators, proteins that affect both negatively and positively the ability of FtsZ to polymerize. The MinC protein is an inhibitor of FtsZ polymerization, recruits MinD to the inner surface of the plasma membrane, where the complex MinCD exerts its function. MinCD is an inhibitor of site-specific polymerization of FtsZ, preventing the formation of the Z ring at the poles of the cells but allowing this to happen in the central region. The elucidation of this process would be invaluable for the rational design of bacterial division inhibitors. In this work, we confirmed the interaction between MinC and FtsZ by Nuclear Magnetic Resonance. These proteins were not in their monomeric form and the high molecular weight of the complex prevented the identification of the amino acids involved in this interaction, due to limitations of the 15NHSQC technology. At present, the MinC protein is being expressed in the presence of deuterium, which significantly increases the limit of this technique 15NHSQC. Biophysical studies were also performed with the aim of characterizing the interaction / Mestrado / Bioquimica / Mestre em Biologia Funcional e Molecular
45

Příprava rekombinantních forem extracelulární domény myších leukocytárních receptorů z rodiny NKR-P1. / Preparation of recombinant forms of the extracellular part of mouse leukocyte receptors from NKR-P1 family.

Adámek, David January 2012 (has links)
Mouse NK cell receptors belonging to NKR-P1 family plays role in activation, inhibition and cytokine secretion by these cells. Aim of this thesis is preparation of extracellular parts of C57BL/6 mouse strain activating receptors mNKR-P1A and mNKR-P1C. Production vectors with coding sequences of both proteins were prepared. Next, optimization of production in E. coli was done and appropriate in vitro refolding and purification protocol were developed. Purified proteins were characterized by mass spectrometry and labeled by a fluorescent dye. Primary screening for potential ligand was performed. Further work will involve structural characterization of the receptors and identification of their ligands. These data may help to clarify the function of NK cells.
46

Studium interakce lektinových receptorů přirozených zabíječů s jejich proteinovými ligandy. / Studies on interactions between natural killer cell lectin receptors and their protein ligands.

Hernychová, Lucie January 2014 (has links)
NK cells are innate lymphocytes which constitute the first line of organism's defence against infections through their receptor system. These cells represent an important part of antiviral and antitumor immunity, they also play a role in transplant immunity, autoimmunity and reproduction. This diploma thesis inquires into the structure of the transmembrane receptor NKR-P1B of mouse NK cells and the interaction with its ligand Clr-b. The aim was to prepare the expression vector coding the ligand-binding and whole extracellular region of the receptor NKR-P1B and to optimize its production and refolding in vitro. Purified protein samples were analyzed by size-exclusion chromatography, electrophoresis and mass spectrometry. Interaction between NKR-P1B and Clr-b proteins was tested using biophysical (size-exclusion chromatography and surface plasmon resonance) and biological methods (labelling of cellular sample with NKR-P1B proteins marked with fluorescent dye). In vitro binding experiments have not confirmed mutual interaction between NKR-P1B and Clr-b despite the prepared proteins binding to the bone marrow cells.
47

Functional Effects of ARV-1502 Analogs Against Bacterial Hsp70 and Implications for Antimicrobial Activity

Brakel, Alexandra, Kolano, Lisa, Kraus, Carl N., Otvos Jr, Laszlo, Hoffmann, Ralf 03 April 2023 (has links)
The antimicrobial peptide (AMP) ARV-1502 was designed based on naturally occurring short proline-rich AMPs, including pyrrhocoricin and drosocin. Identification of chaperone DnaK as a therapeutic target in Escherichia coli triggered intense research on the ligand- DnaK-interactions using fluorescence polarization and X-ray crystallography to reveal the binding motif and characterize the influence of the chaperone on protein refolding activity, especially in stress situations. In continuation of this research, 182 analogs of ARV-1502 were designed by substituting residues involved in antimicrobial activity against Gramnegative pathogens. The peptides synthesized on solid-phase were examined for their binding to E. coli and S. aureus DnaK providing 15 analogs with improved binding characteristics for at least one DnaK. These 15 analogs were distinguished from the original sequence by their increased hydrophobicity parameters. Additionally, the influence of the entire DnaK chaperone system, including co-chaperones DnaJ and GrpE on refolding and ATPase activity, was investigated. The increasingly hydrophobic peptides showed a stronger inhibitory effect on the refolding activity of E. coli chaperones, reducing protein refolding by up to 64%. However, these more hydrophobic peptides had only a minor effect on the ATPase activity. The most dramatic changes on the ATPase activity involved peptides with aspartate substitutions. Interestingly, these peptides resulted in a 59% reduction of the ATPase activity in the E. coli chaperone system whereas they stimulated the ATPase activity in the S. aureus system up to 220%. Of particular note is the improvement of the antimicrobial activity against S. aureus from originally >128 μg/mL to as low as 16 μg/mL. Only a single analog exhibited improved activity over the original value of 8 μg/mL against E. coli. Overall, the various moderate-throughput screenings established here allowed identifying (un)favored substitutions on 1) DnaK binding, 2) the ATPase activity of DnaK, 3) the refolding activity of DnaK alone or together with co-chaperones, and 4) the antimicrobial activity against both E. coli and S. aureus.
48

Electromagnetic field and neurological disorders Alzheimer´s disease, why the problem is difficult and how to solve it

Lyttkens, Peter January 2018 (has links)
No description available.

Page generated in 0.0625 seconds