• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 88
  • 16
  • 14
  • 14
  • 14
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 215
  • 215
  • 104
  • 100
  • 92
  • 88
  • 62
  • 34
  • 31
  • 28
  • 27
  • 26
  • 25
  • 23
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Marrow stromal cells as "universal donor cells" for myocardial regenerative therapy

Atoui, Rony R. January 2007 (has links)
Background. Recently rodent and porcine bone marrow stromal cells (MSCs) have been reported to be uniquely immune tolerant. In order to confirm these findings in human cells, we tested the hypothesis that human MSCs are also immune tolerant, such that they can be useful as "universal donor cells" for myocardial regenerative therapy. / Methods. Immunocompetent female rats underwent left coronary ligations (n=90). They were randomized into 3 groups. In Group I, lac-Z labeled male human MSCs were implanted into the peri-infarcted area. In Group II and III isogenic rat MSCs or culture medium were injected respectively. Echocardiography was carried out to assess cardiac function, and the specimens were examined serially for up to 8 weeks with immunohistochemistry, FISH and PCR to examine MSCs survival and differentiation. / Results. Human MSCs were found to survive within the rat myocardium without immunosuppression. This was confirmed by PCR and FISH test. No cellular infiltration characteristic of immune rejection was noted. Some of these cells appeared to express cardiomyocyte-specific markers such as troponin-Ic and connexin-43. Furthermore, the implanted MSCs significantly contributed to the improvement in ventricular function and attenuated LV remodeling. / Conclusions. Human MSC survived within this xenogeneic environment, and contributed to the improvement in cardiac function. Our findings support the feasibility of using these cells as "universal donor cells" for xeno- or allo-geneic cell therapy, as they can be tested, prepared and stored well in advance for urgent use. Allogeneic MSCs from healthy donors may be particularly useful for severely ill or elderly patients whose own MSCs could be dysfunctional. / Plusieurs études ont récemment démontré la tolérance immunologiquedes cellules souches stromales (CSS) issues de rongeurs et de porcinés. Pour confirmer cesrésultats chez les cellules humaines, l'étude actuelle évalue l'effet des CSS humaines sur larégénération du myocarde chez des rats immunocompétents et étudie la possibilité d'utiliserces CSS comme « donatrices universelles» à la suite d'un infarctus.
72

Improving Axonal Regeneration: Side-to-side Bridges Coupled with Local Delivery of Glial Cell Line-derived Neurotrophic Factor (GDNF)

Alvarez Veronesi, Maria Cecilia 18 February 2014 (has links)
Chronic denervation and chronic axotomy present independent barriers for axonal regeneration. Chronic denervation occurs when nerves are no longer connected to their neuronal cell bodies; chronic axotomy occurs when neurons are not connected to their targets for prolonged periods of time. The harmful effects of chronic denervation can be addressed by the side-to-side bridge surgical technique. Additionally, the negative effects of chronic axotomy can be reversed by GDNF delivery to the nerve. The experiments in this thesis were designed to evaluate nerve regeneration in a rat model of chronic injury after treatment with local GDNF delivery, side to-side bridge protection, or both. The GDNF delivery system consisted of poly(lactic-co-glycolic acid) microspheres embedded in fibrin for controlled delivery of GDNF. Overall, the side-to-side bridges technique was effective in protecting against the negative effects of chronic denervation regardless of treatment with or without GDNF. Local delivery of GDNF did not increase axonal regeneration or functional recovery.
73

Improving Axonal Regeneration: Side-to-side Bridges Coupled with Local Delivery of Glial Cell Line-derived Neurotrophic Factor (GDNF)

Alvarez Veronesi, Maria Cecilia 18 February 2014 (has links)
Chronic denervation and chronic axotomy present independent barriers for axonal regeneration. Chronic denervation occurs when nerves are no longer connected to their neuronal cell bodies; chronic axotomy occurs when neurons are not connected to their targets for prolonged periods of time. The harmful effects of chronic denervation can be addressed by the side-to-side bridge surgical technique. Additionally, the negative effects of chronic axotomy can be reversed by GDNF delivery to the nerve. The experiments in this thesis were designed to evaluate nerve regeneration in a rat model of chronic injury after treatment with local GDNF delivery, side to-side bridge protection, or both. The GDNF delivery system consisted of poly(lactic-co-glycolic acid) microspheres embedded in fibrin for controlled delivery of GDNF. Overall, the side-to-side bridges technique was effective in protecting against the negative effects of chronic denervation regardless of treatment with or without GDNF. Local delivery of GDNF did not increase axonal regeneration or functional recovery.
74

Clinical Translation of Neuro-regenerative Medicine in India: A Study on Barriers and Strategies

Messih, Mark 23 August 2011 (has links)
The prevalence of neurodegenerative disease in India is rising. Regenerative medicine (RM) is being developed to treat these conditions. However, despite advances in RM application for neurological disorders (NeuroRM), there is a lack of research on clinical translation of NeuroRM technologies in developing countries. Given that India is one of the first nations to translate in this field, much can be learned on challenges and solutions arising during translation. This study identifies stakeholders involved in such translation and outlines roles of each; it describes India’s regulatory environment concerning NeuroRM translation; and discusses the impact of collaboration in clinical translation. Twenty-three face-to-face interviews with clinicians, researchers and policy-makers within India were undertaken and transcripts subjected to thematic analysis. The study demonstrates that clinical translation of NeuroRM within India is taking place robustly, it identifies barriers and good practices being adopted, and provides recommendations based on participants’ experiences.
75

A study of strength and vasoactivity in a tissue engineered vascular media

Schutte, Stacey C. 06 April 2009 (has links)
To be successful a tissue engineered small diameter blood vessel must be non-immunogenic, non-thrombogenic, have mechanical properties similar to native vessel and be vasoactive. The vascular media is responsible for the mechanical properties and the vasoactivity of the vessel. The collagen hydrogel approach has been long used and has many advantages, but has not yet achieved the mechanical integrity needed for implantation. No collagen-based tissue engineered vascular media has been shown to be vasoactive using culture techniques required to achieve the cell numbers needed to make a vascular graft. To study collagen synthesis, two model systems were used. Cells were seeded on top of an adsorbed collagen I or fibrin layer. Alternatively the cells were encapsulated in a collagen or fibrin hydrogel. Collagen I, decorin and biglycan synthesis was affected by both matrix type and presentation. After two weeks in culture the smooth muscle cells produce more type I collagen in the collagen based hydrogels then in the fibrin hydrogels and was used for further studies. The collagen based tissue engineered vascular media produced a consistent vasoactive response between two and eight weeks of culture. The smooth muscle cells have functional endothelin, kinin, adrenergic, serotonergic and purinergic receptors. The application of cyclic strain improves both the tissue strength and the contractile response. Use of transforming growth factor-β improved tissue strength, but reduced the contractile response. Transforming growth factor- β actually promoted a more contractile cell phenotype, but a stronger contractile force was required to overcome the thick compact collagen hydrogel and elicit a measurable contraction. This work adds to what is known about collagen-based tissue engineered vascular medias by identifying means of improving not only strength but vasoactivity. The trade-offs found between these two important characteristics are relevant to all tissue engineered medias.
76

Design and development of anisotropic laminate scaffolds of electrospun polycaprolactone for annulus fibrosus tissue engineering applications

Fotticchia, Andrea January 2016 (has links)
In several cases, current therapies available to treat a large number of musculoskeletal system diseases are unsatisfactory as they provide only temporary or partial restoration of the damaged or degenerated site. In an attempt to maintain a high standard of life quality and minimise the economic losses due to the treatments of these frequently occurring ailments and subsequent lost working days, alternative therapies are being explored. Contrary to the current treatments, tissue engineering aims to regenerate the impaired tissue rather than repair and alleviate the symptoms; thus offering a definitive solution. The annulus fibrosus (AF) of the intervertebral disc (IVD) is a musculoskeletal system component frequently subjected to degeneration and rupture, characterised by predominance of anisotropically arranged collagen fibres. In the present thesis, electrospinning technology is used to fabricate polycaprolactone (PCL) scaffolds intended to replicate the anisotropic structure of the AF.
77

Epicardial heterogeneity during zebrafish heart development

Weinberger, Michael January 2017 (has links)
The epicardium, a cell layer enveloping the heart muscle, drives embryonic heart development and heart repair in the adult zebrafish. Previous studies found the epicardium to consist of multiple cell populations with distinct phenotypes and functions. Here, I investigated epicardial heterogeneity in the developing zebrafish heart, focusing on the developmental gene program that is also reactivated during adult heart regeneration. Transcription factor 21 (Tcf21), T-box 18 (Tbx18) and Wilms' tumor suppressor 1b (Wt1b) are often used interchangeably to identify the zebrafish epicardium. Analyzing newly generated reporter lines and endogenous gene expression, I showed that the epicardial expression of tcf21, tbx18 and wt1b during development is heterogeneous. I then collected epicardial cells from newly generated reporter lines at 5 days-post-fertilization and performed single-cell RNA sequencing. I identified three distinct epicardial subpopulations with specific gene expression profiles. The first subpopulation expressed tcf21, tbx18 and wt1b and appeared to represent the main epicardial layer. The second subpopulation expressed tbx18, but not tcf21 or wt1b. Instead, it expressed smooth muscle markers and seemed restricted to the bulbus arteriosus. The third epicardial subpopulation only expressed tcf21 and resided within the epicardial layer. I compared the single-cell subpopulations with transcriptomic bulk data and visualized the expression of marker genes to investigate their spatial distribution. Using ATAC sequencing, I additionally identified open regulatory regions located in proximity to subpopulation-specific marker genes and showed subpopulation-specific activity in vivo. My results detail distinct cell populations in the developing zebrafish epicardium, likely to fulfil distinct and specific cellular functions. Future experiments will involve targeting signature genes enriched within each epicardial subpopulation, such as those encoding Adrenomedullin a (first subpopulation), Alpha Smooth Muscle Actin (second subpopulation) and Claudin 11a (third subpopulation), employing cell type-specific genome editing to test whether and how the identified heterogeneity underlies distinct epicardial cell fates and functions. Taken together, my work adds significantly to the understanding of the cellular and molecular basis of epicardial development and can offer novel insights in the context of heart regeneration.
78

Development of characterisation and quality potency assays for human mesenchymal stem cells

Chan, Alexander K. C. January 2016 (has links)
Regenerative medicine and cell therapies hold great potential to treat a variety of medical conditions. Product characterisation of these therapies is particularly difficult as they pose regulatory challenges due to donor heterogeneity and the lack of standardised lot release tests that can reliably predict in vivo function. Human mesenchymal stem cells (hMSCs), also called multipotent stem cells or mesenchymal stromal cells, are a viable option in cell therapies due to their immunosuppressive and pro-angiogenic functions. Currently there are no standardised methods or potency assays to quantify these properties. To address this, five individual hMSCs lines from different donors were created and characterised based upon growth rate, differentiation capability and extracellular surface protein expression. A novel multiparameter flow cytometry method to characterise the cells based upon extracellular surface markers was developed that supports high-throughput and high-content analyses. Three candidate lines were taken forward and assessed in multiple in vitro bioassays that examined the hMSC immunosuppressive response to a defined inflammatory environment, effect on T-cell proliferation, and effect on a mixed lymphocyte population. Next, the angiogenic properties were assessed using human umbilical vein endothelial cells (HUVECs) tube formation as a model for cardiac regeneration. This involved utilising automated time lapse microscopy techniques coupled with image analysis software to quantify endothelial to tube formation. Further analysis of the hMSC secretome revealed differences in the levels of pro-angiogenic cytokines such as vascular endothelial growth factor, hepatocyte growth factor and IL-8. Significant differences in angiogenic potency were found between the hMSC lines. This thesis highlights the need to develop specific assays that reflect the intended clinical action. Taken together, these quantitative approaches provide valuable tools to measure hMSC quality and potency, and supports continued efforts to improve characterisation strategies for cellular therapies.
79

Estudo dos subtipos celulares do sangue de cordão umbilical e sua viabilidade antes do processamento e após o descongelamento = armazenamento à temperatura ambiente por 96 horas =Study of umbilical cord blood cell subtypes and its viability prefreezing and post-thaw: stored pre-freezing at room temperature for 96 hours / Study of umbilical cord blood cell subtypes and its viability prefreezing and post-thaw : stored pre-freezing at room temperature for 96 hours

Pereira-Cunha, Fernanda Gonçalves, 1968- 24 August 2018 (has links)
Orientador: Irene Gyongyver Heidemarie Lorand Metze, Ângela Cristina Malheiros Luzo / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas / Made available in DSpace on 2018-08-24T20:21:23Z (GMT). No. of bitstreams: 1 Pereira-Cunha_FernandaGoncalves_D.pdf: 2398726 bytes, checksum: 1eeb61b74ea6dfdcea43770d6371aae0 (MD5) Previous issue date: 2014 / Resumo: O sangue de cordão umbilical (SCU) é uma fonte de células-tronco para terapia celular e transplante de medula óssea. Devido a grande extensão territorial do Brasil, muitas vezes acontecem problemas logísticos na coleta de inúmeras unidades de SCU (USCU). Nosso objetivo foi estudar a mudança de proporções e a viabilidade dos diversos subtipos celulares do SCU, especialmente das células-tronco CD34+ até 96 horas após a coleta de amostras mantidas à temperatura ambiente (T.A.). Avaliamos ainda a modificação destes dados após o descongelamento das amostras. Cada subtipo celular foi identificado fenotipicamente usando citometria de fluxo. A viabilidade celular foi estudada utilizando o corante 7-aminoactinomicina (7-AAD). A funcionalidade das células-tronco CD34+ foi examinada através de ensaios clonogênicos. Num primeiro estudo foram analisadas trinta e seis USCU em 24, 48 e 96 horas após a coleta. As células-tronco CD34+ e os linfócitos T maduros aumentaram a porcentagem durante o período de estocagem. Os linfócitos B maduros e as células mesenquimais diminuiram, mantendo a viabilidade. Os granulócitos diminuíram a porcentagem com perda da viabilidade. Os monócitos e precursores B mantiveram-se estáveis. Os ensaios clonogênicos demonstraram diminuição no número de unidades formadoras de colônias (CFU) nas USCU estocadas até 96 horas (média 194/ 24 horas e 168/ 96 horas), mas todas as USCU apresentaram bom número de colônias. No segundo estudo foram analisadas vinte USCU em 24 e 96 horas após a coleta. Essas amostras foram congeladas e descongeladas após seis meses para serem reavaliadas. Os resultados das amostras pré-congelamento foram semelhantes aos encontrados no primeiro estudo. Os resultados pós-descongelamento demonstraram que as células CD34+ diminuíram, mas não significativamente, quando comparamos amostras estocadas 24 e 96 horas antes de processar. As células-tronco mesenquimais, precursores B, linfócitos B maduros e monócitos não apresentaram alterações estatísticas significantes. Os linfócitos T e granulócitos diminuíram significativamente. Houve crescimento de CFU em todas as amostras, embora o número de colônias tenha sido menor nas amostras estocadas 96 horas pré-congelamento quando comparadas às processadas após 24 horas (mediana 68 x 57; p <0.0001). No entanto, a maior diminuição foi observada pós-descongelamento (mediana 36 x 27 respectivamente). A diminuição do número de CFU estocadas 96 horas apresentou correlação com a porcentagem de células CD34+ inviáveis pré-congelamento. As células-tronco CD34+ e mesenquimais apresentaram boa viabilidade até 96 horas à T.A., mesmo pós-descongelamento. O processo de descongelamento diminuiu a porcentagem, mas não a viabilidade dessas células. O crescimento de CFU durante todo o período analisado comprovou a funcionalidade das células CD34+. A manutenção da viabilidade e funcionalidade das células-tronco do SCU estocados até 96 horas após a coleta à T.A., provendo número considerável de CFU mesmo após o congelamento e descongelamento poderá possibilitar a coleta de USCU de lugares mais distantes dos Bancos Públicos de SCU (BSCUP), o que seria muito importante para seu armazenamento. Portanto, as USCU poderiam ser manipuladas até 4 dias após a coleta quando necessário. Isto aumentaria consideravelmente o recrutamento de bolsas de SCU nos BSCUP, mantendo a segurança da fonte de células-tronco para uso na medicina regenerativa / Abstract: Umbilical cord blood (UCB) is a good source of stem cells for cell therapy and has been successfully used for bone marrow transplantation. In 2004, the Brazilian Public Network of Cord Blood Banks was founded. However, because our country is large, logistic problems could hamper the collection of numerous samples. Our aim was to evaluate the variation in proportion and viability of several UCB cell subsets, especially CD34+ stem-cells and their viability until 96 hours after collection of samples stored at room temperature. We evaluated also all cell subtypes and their viability and functionality kept frozen for 6 months and then thawed. Each cell subtype was identified by immunophenotyping and the viability was studied by 7-AAD incorporation and CD34+ stem-cell functionality was studied by clonogenic assay. In the first study we analysed thirty-six UCB units at 24, 48 and 96 hrs after collection and we demonstrated that CD34+ stem cells and mature T lymphocytes percentages increased during this period. Mature B lymphocytes and mesenchymal stem cells (MSCs) decreased, maintaining viability. Granulocytes decreased with loss of viability. Monocytes and immature B lymphocytes remained stable. Clonogenic assays showed a decrease in colony-forming unit (CFU) number in UCB units stored for 96 hours. But even so, an acceptable number CFU was maintained. In the second study we analysed twenty UCB units at 24 and 96 hrs after collection, frozen for 6 months and thawed for reevaluation. Pre freezing (PF) results were similar to those found in the first study. Post-thaw (PT) results showed that the number of CD34+ cells tended to decrease in kept 96 hrs at room temperature before processing. PT /24 and 96 hrs results of MSCs, immature and mature B cells and monocytes had no significant variation. T lymphocytes and granulocytes had a significant decrease. CFU growth was observed in all samples. Delay of 96 hrs PF was associated with a decrease in CFU number (median 68 x 57; p <0.0001). Moreover, a larger decrease was observed in PT samples (median 36 x 27 respectively). CFU loss at 96 hrs PF showed a correlation with the proportion of non-viable CD34+ before processing. CD34+ and MSCs stem-cells remained viable until 96 hrs after collection at room temperature even after freezing and thawing. CFU growth during all period analyzed confirming CD34+ functionality. The maintenance of viability and functionality of UCB stem cells stored until 96 hrs after collection at room temperature, providing a good number of colonies even after freezing and thawing could possibly allow the collection of UCBUs from places far away from UCB Banks, which would be of great value for increasing the number of Units in Umbilical Cord Blood Banks / Doutorado / Clinica Medica / Doutora em Clínica Médica
80

High-throughput Cell Encapsulation in Monodisperse Agarose Microcapsules Using a Microfluidic Device

Monette-Catafard, Nicolas January 2014 (has links)
Over the last decade, microfluidics has emerged as a distinct new field with promising applications for diverse research areas. The ability to precisely control fluids at the microscale allows the execution of a variety of programmable semi-automatic operations on the same device, effectively forming a lab-on-a-chip. In particular, droplet-based microfluidic systems – which reliably generate highly uniform microdroplets at a high throughput – enable the controlled compartmentalization of biological material and have the potential to influence mainstream biomedical research. In this thesis, a microfluidic platform is presented that allows the encapsulation of viable cells in agarose microcapsules for applications in cell–based therapy. As an improvement to pre-existing methods of cell encapsulation, the proposed system combines continuous high throughput cell-encapsulation with on-chip microcapsule gelation and purification.

Page generated in 0.0874 seconds