• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regge Calculus as a Numerical Approach to General Relativity

Khavari, Parandis 17 January 2012 (has links)
A (3+1)-evolutionary method in the framework of Regge Calculus, known as "Parallelisable Implicit Evolutionary Scheme", is analysed and revised so that it accounts for causality. Furthermore, the ambiguities associated with the notion of time in this evolutionary scheme are addressed and a solution to resolving such ambiguities is presented. The revised algorithm is then numerically tested and shown to produce the desirable results and indeed to resolve a problem previously faced upon implementing this scheme. An important issue that has been overlooked in "Parallelisable Implicit Evolutionary Scheme" was the restrictions on the choice of edge lengths used to build the space-time lattice as it evolves in time. It is essential to know what inequalities must hold between the edges of a 4-dimensional simplex, used to construct a space-time, so that the geometry inside the simplex is Minkowskian. The only known inequality on the Minkowski plane is the "Reverse Triangle Inequality" which holds between the edges of a triangle constructed only from space-like edges. However, a triangle, on the Minkowski plane, can be built from a combination of time-like, space-like or null edges. Part of this thesis is concerned with deriving a number of inequalities that must hold between the edges of mixed triangles. Finally, the Raychaudhuri equation is considered from the point of view of Regge Calculus. The Raychaudhuri equation plays an important role in many areas of relativistic Physics and Astrophysics, most importantly in the proof of singularity theorems. An analogue to the Raychaudhuri equation in the framework of Regge Calculus is derived. Both (2+1)-dimensional and (3+1)-dimensional cases are considered and analogues for average expansion and shear scalar are found.
2

Regge Calculus as a Numerical Approach to General Relativity

Khavari, Parandis 17 January 2012 (has links)
A (3+1)-evolutionary method in the framework of Regge Calculus, known as "Parallelisable Implicit Evolutionary Scheme", is analysed and revised so that it accounts for causality. Furthermore, the ambiguities associated with the notion of time in this evolutionary scheme are addressed and a solution to resolving such ambiguities is presented. The revised algorithm is then numerically tested and shown to produce the desirable results and indeed to resolve a problem previously faced upon implementing this scheme. An important issue that has been overlooked in "Parallelisable Implicit Evolutionary Scheme" was the restrictions on the choice of edge lengths used to build the space-time lattice as it evolves in time. It is essential to know what inequalities must hold between the edges of a 4-dimensional simplex, used to construct a space-time, so that the geometry inside the simplex is Minkowskian. The only known inequality on the Minkowski plane is the "Reverse Triangle Inequality" which holds between the edges of a triangle constructed only from space-like edges. However, a triangle, on the Minkowski plane, can be built from a combination of time-like, space-like or null edges. Part of this thesis is concerned with deriving a number of inequalities that must hold between the edges of mixed triangles. Finally, the Raychaudhuri equation is considered from the point of view of Regge Calculus. The Raychaudhuri equation plays an important role in many areas of relativistic Physics and Astrophysics, most importantly in the proof of singularity theorems. An analogue to the Raychaudhuri equation in the framework of Regge Calculus is derived. Both (2+1)-dimensional and (3+1)-dimensional cases are considered and analogues for average expansion and shear scalar are found.
3

Non-Rigid Motion and Regge Calculus

Jasinschi, Rado, Yuille, Alan 01 November 1987 (has links)
We study the problem of recovering the structure from motion of figures which are allowed to perform a controlled non-rigid motion. We use Regge Calculus to approximate a general surface by a net of triangles. The non- rigid flexing motion we deal with corresponds to keeping the triangles rigid and allowing bending only at the joins between triangles. We show that depth information can be obtained by using a modified version of the Incremental Rigidity Scheme devised by Ullman (1984). We modify this scheme to allow for flexing motion and call our version the Incremental Semirigidity Scheme.
4

Discrete gravitational approaches to cosmology

Liu, Rex Gerry January 2015 (has links)
Exact solutions to the Einstein field equations are notoriously difficult to find. Most known solutions describe systems with unrealistically high degrees of symmetry. A notable example is the FLRW metric underlying modern cosmology: the universe is assumed to be perfectly homogeneous and isotropic, but in the late universe, this is only true on average and only at large scales. Where an exact solution is not available, discrete gravitational approaches can approximate the system instead. This thesis investigates several cosmological systems using two distinct discrete approaches. Closed, flat, and open ‘lattice universes’ are first considered where matter is distributed as a regular lattice of identical point masses in constant-time hypersurfaces. Lindquist and Wheeler’s Schwarzschild–cell method is applied where the lattice cell around each mass is approximated by a perfectly spherical cell with Schwarzschild space–time inside. The resulting dynamics and cosmological redshifts closely resemble those of the dust-filled FLRW universes, but with certain differences in redshift behaviour attributable to the lattice universe’s lumpiness. The application of Regge calculus to cosmology is considered next. We focus exclusively on the closed models developed by Collins, Williams, and Brewin. Their approach is first applied to a universe where an exact solution is already well-established, the vacuum Λ-FLRW model. The resulting models are found to closely reproduce the dynamics of the continuum model being approximated, though certain constraints on the applicability of the approach are also uncovered. Then using this knowledge, we next model the closed lattice universe. The resulting evolution closely resembles that of the closed dust-filled FLRW universe. Constraints on the placement of the masses in the Regge skeleton are also uncovered. Finally, a ‘lattice universe’ with one perturbed mass is modelled. The evolution is still stable and similar to that of the unperturbed model. The thesis concludes by discussing possible extensions of our work.
5

Constructing quantum spacetime : relation to classical gravity

Steinhaus, Sebastian January 2014 (has links)
Despite remarkable progress made in the past century, which has revolutionized our understanding of the universe, there are numerous open questions left in theoretical physics. Particularly important is the fact that the theories describing the fundamental interactions of nature are incompatible. Einstein's theory of general relative describes gravity as a dynamical spacetime, which is curved by matter and whose curvature determines the motion of matter. On the other hand we have quantum field theory, in form of the standard model of particle physics, where particles interact via the remaining interactions - electromagnetic, weak and strong interaction - on a flat, static spacetime without gravity. A theory of quantum gravity is hoped to cure this incompatibility by heuristically replacing classical spacetime by quantum spacetime'. Several approaches exist attempting to define such a theory with differing underlying premises and ideas, where it is not clear which is to be preferred. Yet a minimal requirement is the compatibility with the classical theory, they attempt to generalize. Interestingly many of these models rely on discrete structures in their definition or postulate discreteness of spacetime to be fundamental. Besides the direct advantages discretisations provide, e.g. permitting numerical simulations, they come with serious caveats requiring thorough investigation: In general discretisations break fundamental diffeomorphism symmetry of gravity and are generically not unique. Both complicates establishing the connection to the classical continuum theory. The main focus of this thesis lies in the investigation of this relation for spin foam models. This is done on different levels of the discretisation / triangulation, ranging from few simplices up to the continuum limit. In the regime of very few simplices we confirm and deepen the connection of spin foam models to discrete gravity. Moreover, we discuss dynamical, e.g. diffeomorphism invariance in the discrete, to fix the ambiguities of the models. In order to satisfy these conditions, the discrete models have to be improved in a renormalisation procedure, which also allows us to study their continuum dynamics. Applied to simplified spin foam models, we uncover a rich, non--trivial fixed point structure, which we summarize in a phase diagram. Inspired by these methods, we propose a method to consistently construct the continuum theory, which comes with a unique vacuum state. / Trotz bemerkenswerter Fortschritte im vergangenen Jahrhundert, die unser Verständnis des Universums revolutioniert haben, gibt es noch zahlreiche ungeklärte Fragen in der theoretischen Physik. Besondere Bedeutung kommt der Tatsache zu, dass die Theorien, welche die fundamentalen Wechselwirkungen der Natur beschreiben, inkompatibel sind. Nach Einsteins allgemeiner Relativitätstheorie wird die Gravitation durch eine dynamische Raumzeit dargestellt, die von Materie gekrümmt wird und ihrerseits durch die Krümmung die Bewegung der Materie bestimmt. Dem gegenüber steht die Quantenfeldtheorie, die die verbliebenen Wechselwirkungen - elektromagnetische, schwache und starke Wechselwirkung - im Standardmodell der Teilchenphysik beschreibt, in dem Teilchen auf einer statischen Raumzeit -- ohne Gravitation -- miteinander interagieren. Die Hoffnung ist, dass eine Theorie der Quantengravitation diese Inkompatibilität beheben kann, indem, heuristisch, die klassische Raumzeit durch eine 'Quantenraumzeit' ersetzt wird. Es gibt zahlreiche Ansätze eine solche Theorie zu definieren, die auf unterschiedlichen Prämissen und Ideen beruhen, wobei a priori nicht klar ist, welche zu bevorzugen sind. Eine Minimalanforderung an diese Theorien ist Kompatibilität mit der klassischen Theorie, die sie verallgemeinern sollen. Interessanterweise basieren zahlreiche Modelle in ihrer Definition auf Diskretisierungen oder postulieren eine fundamentale Diskretheit der Raumzeit. Neben den unmittelbaren Vorteilen, die Diskretisierungen bieten, z.B. das Ermöglichen numerischer Simulationen, gibt es auch gravierende Nachteile, die einer ausführlichen Untersuchung bedürfen: Im Allgemeinen brechen Diskretisierungen die fundamentale Diffeomorphismensymmetrie der Gravitation und sind in der Regel nicht eindeutig definiert. Beides erschwert die Wiederherstellung der Verbindung zur klassischen, kontinuierlichen Theorie. Das Hauptaugenmerk dieser Doktorarbeit liegt darin diese Verbindung insbesondere für Spin-Schaum-Modelle (spin foam models) zu untersuchen. Dies geschieht auf sehr verschiedenen Ebenen der Diskretisierung / Triangulierung, angefangen bei wenigen Simplizes bis hin zum Kontinuumslimes. Im Regime weniger Simplizes wird die bekannte Verbindung von Spin--Schaum--Modellen zu diskreter Gravitation bestätigt und vertieft. Außerdem diskutieren wir dynamische Prinzipien, z.B. Diffeomorphismeninvarianz im Diskreten, um die Ambiguitäten der Modelle zu fixieren. Um diese Bedingungen zu erfüllen, müssen die diskreten Modelle durch Renormierungsverfahren verbessert werden, wodurch wir auch ihre Kontinuumsdynamik untersuchen können. Angewandt auf vereinfachte Spin-Schaum-Modelle finden wir eine reichhaltige, nicht-triviale Fixpunkt-Struktur, die wir in einem Phasendiagramm zusammenfassen. Inspiriert von diesen Methoden schlagen wir zu guter Letzt eine konsistente Konstruktionsmethode für die Kontinuumstheorie vor, die einen eindeutigen Vakuumszustand definiert.

Page generated in 0.0567 seconds