• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • Tagged with
  • 10
  • 10
  • 10
  • 10
  • 8
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regressão binária bayesiana com o uso de variáveis auxiliares / Bayesian binary regression models using auxiliary variables

Farias, Rafael Braz Azevedo 27 April 2007 (has links)
A inferência Bayesiana está cada vez mais dependente de algoritmos de simulação estocástica, e sua eficiência está diretamente relacionada à eficiência do algoritmo considerado. Uma prática bastante utilizada é a introdução de variáveis auxiliares para obtenção de formas conhecidas para as distribuições {\\it a posteriori} condicionais completas, as quais facilitam a implementação do amostrador de Gibbs. No entanto, a introdução dessas variáveis pode produzir algoritmos onde os valores simulados são fortemente correlacionados, fato esse que prejudica a convergência. O agrupamento das quantidades desconhecidas em blocos, de tal maneira que seja viável a simulação conjunta destas quantidades, é uma alternativa para redução da autocorrelação, e portanto, ajuda a melhorar a eficiência do procedimento de simulação. Neste trabalho, apresentamos propostas de simulação em blocos no contexto de modelos de regressão binária com o uso de variáveis auxiliares. Três classes de funções de ligação são consideradas: probito, logito e probito-assimétrico. Para as duas primeiras apresentamos e implementamos as propostas de atualização conjunta feitas por Holmes e Held (2006). Para a ligação probito-assimétrico propomos quatro diferentes maneiras de construir os blocos, e comparamos estes algoritmos através de duas medidas de eficiência (distância média Euclidiana entre atualizações e tamanho efetivo da amostra). Concluímos que os algoritmos propostos são mais eficientes que o convencional (sem blocos), sendo que um deles proporcionou ganho superior a 160\\% no tamanho efetivo da amostra. Além disso, discutimos uma etapa bastante importante da modelagem, denominada análise de resíduos. Nesta parte adaptamos e implementamos os resíduos propostos para a ligação probito para os modelos logístico e probito-assimétrico. Finalmente, utilizamos os resíduos propostos para verificar a presença de observações discrepantes em um conjunto de dados simulados. / The Bayesian inference is getting more and more dependent of stochastic simulation algorithms, and its efficiency is directly related with the efficiency of the considered algorithm. The introduction of auxiliary variables is a technique widely used for attainment of the full conditional distributions, which facilitate the implementation of the Gibbs sampling. However, the introduction of these auxiliary variables can produce algorithms with simulated values highly correlated, this fact harms the convergence. The grouping of the unknow quantities in blocks, in such way that the joint simulation of this quantities is possible, is an alternative for reduction of the autocorrelation, and therefore, improves the efficiency of the simulation procedure. In this work, we present proposals of simulation using the Gibbs block sampler in the context of binary response regression models using auxiliary variables. Three class of links are considered: probit, logit and skew-probit. For the two first we present and implement the scheme of joint update proposed by Holmes and Held (2006). For the skew-probit, we consider four different ways to construct the blocks, and compare these algorithms through two measures of efficiency (the average Euclidean update distance between interactions and effective sample size). We conclude that the considered algorithms are more efficient than the conventional (without blocks), where one of these leading to around 160\\% improvement in the effective sample size. Moreover, we discuss one important stage of the modelling, called residual analysis. In this part we adapt and implement residuals considered in the probit model for the logistic and skew-probit models. For a simulated data set we detect the presence of outlier used the residuals proposed here for the different models.
2

Regressão binária usando ligações potência e reversa de potência / Binary regression using power and reversal power links

Anyosa, Susan Alicia Chumbimune 07 April 2017 (has links)
O objetivo desta dissertação é estudar uma família de ligações assimétricas para modelos de regressão binária sob a abordagem bayesiana. Especificamente, apresenta-se a estimação dos parâmetros da família de modelos de regressão binária com funções de ligação potência e reversa de potência considerando o método de estimação Monte Carlo Hamiltoniano, na extensão No-U-Turn Sampler, e o método Metropolis-Hastings dentro de Gibbs. Além disso, estudam-se diferentes medidas de comparação de modelos, incluindo critérios de informação e de avaliação preditiva. Um estudo de simulação foi desenvolvido para estudar a acurácia e eficiência nos parâmetros estimados. Através da análise de dados educacionais, mostra-se que os modelos usando as ligações propostas apresentam melhor ajuste do que os modelos usando ligações tradicionais. / The aim of this dissertation is to study a family of asymmetric link functions for binary regression models under Bayesian approach. Specifically, we present the estimation of parameters of power and reversal power binary regression models considering Hamiltonian Monte Carlo method, on No-U-Turn Sampler extension, and Metropolis-Hastings within Gibbs sampling method. Furthermore, we study a wide variety of model comparison measures, including information criteria and measures of predictive evaluation. A simulation study was conducted in order to research accuracy and efficiency on estimated parameters. Through analysis of educational data we show that models using the proposed link functions perform better fit than models using standard links.
3

Regressão binária bayesiana com o uso de variáveis auxiliares / Bayesian binary regression models using auxiliary variables

Rafael Braz Azevedo Farias 27 April 2007 (has links)
A inferência Bayesiana está cada vez mais dependente de algoritmos de simulação estocástica, e sua eficiência está diretamente relacionada à eficiência do algoritmo considerado. Uma prática bastante utilizada é a introdução de variáveis auxiliares para obtenção de formas conhecidas para as distribuições {\\it a posteriori} condicionais completas, as quais facilitam a implementação do amostrador de Gibbs. No entanto, a introdução dessas variáveis pode produzir algoritmos onde os valores simulados são fortemente correlacionados, fato esse que prejudica a convergência. O agrupamento das quantidades desconhecidas em blocos, de tal maneira que seja viável a simulação conjunta destas quantidades, é uma alternativa para redução da autocorrelação, e portanto, ajuda a melhorar a eficiência do procedimento de simulação. Neste trabalho, apresentamos propostas de simulação em blocos no contexto de modelos de regressão binária com o uso de variáveis auxiliares. Três classes de funções de ligação são consideradas: probito, logito e probito-assimétrico. Para as duas primeiras apresentamos e implementamos as propostas de atualização conjunta feitas por Holmes e Held (2006). Para a ligação probito-assimétrico propomos quatro diferentes maneiras de construir os blocos, e comparamos estes algoritmos através de duas medidas de eficiência (distância média Euclidiana entre atualizações e tamanho efetivo da amostra). Concluímos que os algoritmos propostos são mais eficientes que o convencional (sem blocos), sendo que um deles proporcionou ganho superior a 160\\% no tamanho efetivo da amostra. Além disso, discutimos uma etapa bastante importante da modelagem, denominada análise de resíduos. Nesta parte adaptamos e implementamos os resíduos propostos para a ligação probito para os modelos logístico e probito-assimétrico. Finalmente, utilizamos os resíduos propostos para verificar a presença de observações discrepantes em um conjunto de dados simulados. / The Bayesian inference is getting more and more dependent of stochastic simulation algorithms, and its efficiency is directly related with the efficiency of the considered algorithm. The introduction of auxiliary variables is a technique widely used for attainment of the full conditional distributions, which facilitate the implementation of the Gibbs sampling. However, the introduction of these auxiliary variables can produce algorithms with simulated values highly correlated, this fact harms the convergence. The grouping of the unknow quantities in blocks, in such way that the joint simulation of this quantities is possible, is an alternative for reduction of the autocorrelation, and therefore, improves the efficiency of the simulation procedure. In this work, we present proposals of simulation using the Gibbs block sampler in the context of binary response regression models using auxiliary variables. Three class of links are considered: probit, logit and skew-probit. For the two first we present and implement the scheme of joint update proposed by Holmes and Held (2006). For the skew-probit, we consider four different ways to construct the blocks, and compare these algorithms through two measures of efficiency (the average Euclidean update distance between interactions and effective sample size). We conclude that the considered algorithms are more efficient than the conventional (without blocks), where one of these leading to around 160\\% improvement in the effective sample size. Moreover, we discuss one important stage of the modelling, called residual analysis. In this part we adapt and implement residuals considered in the probit model for the logistic and skew-probit models. For a simulated data set we detect the presence of outlier used the residuals proposed here for the different models.
4

Regressão binária usando ligações potência e reversa de potência / Binary regression using power and reversal power links

Susan Alicia Chumbimune Anyosa 07 April 2017 (has links)
O objetivo desta dissertação é estudar uma família de ligações assimétricas para modelos de regressão binária sob a abordagem bayesiana. Especificamente, apresenta-se a estimação dos parâmetros da família de modelos de regressão binária com funções de ligação potência e reversa de potência considerando o método de estimação Monte Carlo Hamiltoniano, na extensão No-U-Turn Sampler, e o método Metropolis-Hastings dentro de Gibbs. Além disso, estudam-se diferentes medidas de comparação de modelos, incluindo critérios de informação e de avaliação preditiva. Um estudo de simulação foi desenvolvido para estudar a acurácia e eficiência nos parâmetros estimados. Através da análise de dados educacionais, mostra-se que os modelos usando as ligações propostas apresentam melhor ajuste do que os modelos usando ligações tradicionais. / The aim of this dissertation is to study a family of asymmetric link functions for binary regression models under Bayesian approach. Specifically, we present the estimation of parameters of power and reversal power binary regression models considering Hamiltonian Monte Carlo method, on No-U-Turn Sampler extension, and Metropolis-Hastings within Gibbs sampling method. Furthermore, we study a wide variety of model comparison measures, including information criteria and measures of predictive evaluation. A simulation study was conducted in order to research accuracy and efficiency on estimated parameters. Through analysis of educational data we show that models using the proposed link functions perform better fit than models using standard links.
5

Regressão binária nas abordagens clássica e Bayesiana / Binary regression in the classical and Bayesian approaches

Fernandes, Amélia Milene Correia 16 December 2016 (has links)
Este trabalho tem como objetivo estudar o modelo de regressão binária nas abordagens clássica e bayesiana utilizando as funções de ligações probito, logito, complemento log-log, transformação box-cox e probito-assimétrico. Na abordagem clássica apresentamos as suposições e o procedimento para ajustar o modelo de regressão e verificamos a precisão dos parâmetros estimados, construindo intervalos de confiança e testes de hipóteses. Enquanto que, na inferência bayesiana fizemos um estudo comparativo utilizando duas metodologias. Na primeira metodologia consideramos densidades a priori não informativas e utilizamos o algoritmo Metropolis-Hastings para ajustar o modelo. Na segunda metodologia utilizamos variáveis auxiliares para obter a distribuição a posteriori conhecida, facilitando a implementação do algoritmo do Amostrador de Gibbs. No entanto, a introdução destas variáveis auxiliares podem gerar valores correlacionados, o que leva à necessidade de se utilizar o agrupamento das quantidades desconhecidas em blocos para reduzir a autocorrelação. Através do estudo de simulação mostramos que na inferência clássica podemos usar os critérios AIC e BIC para escolher o melhor modelo e avaliamos se o percentual de cobertura do intervalo de confiança assintótica está de acordo com o esperado na teoria assintótica. Na inferência bayesiana constatamos que o uso de variáveis auxiliares resulta em um algoritmo mais eficiente segundo os critérios: erro quadrático médio (EQM), erro percentual absoluto médio (MAPE) e erro percentual absoluto médio simétrico (SMAPE). Como ilustração apresentamos duas aplicações com dados reais. Na primeira, consideramos um conjunto de dados da variação do Ibovespa e a variação do valor diário do fechamento da cotação do dólar no período de 2013 a 2016. Na segunda aplicação, trabalhamos com um conjunto de dados educacionais (INEP-2013), focando nos estudos das variáveis que influenciam a aprovação do aluno. / The objective of this work is to study the binary regression model under the frequentist and Bayesian approaches using the probit, logit, log-log complement, Box-Cox transformation and skewprobit as link functions. In the classical approach we presented assumpti- ons and procedures used in the regression modeling. We verified the accuracy of the estimated parameters by building confidence intervals and conducting hypothesis tests. In the Bayesian approach we made a comparative study using two methodologies. For the first methodology, we considered non-informative prior distributions and the Metropolis-Hastings algorithm to estimate the model. In the second methodology we used auxiliary variables to obtain the known a posteriori distribution, allowing the use of the Gibbs Sampler algorithm. However, the introduction of these auxiliary variables can generate correlated values and needs the use of clustering of unknown quantities in blocks to reduce the autocorrelation. In the simulation study we used the AIC and BIC information criteria to select the most appropriate model and we evaluated whether the coverage probabilities of the confidence interval is in agre- ement with that expected by the asymptotic theory. In Bayesian approach we found that the inclusion of auxiliary variables in the model results in a more efficient algoritm according to the MSE, MAPE and SMAPE criteria. In this work we also present applications to two real datasets. The first dataset used is the variation of the Ibovespa and variation of the daily value of the American dollar at the time of closing the 2013 to 2016. The second dataset, used is an educational data set (INEP-2013), where we are interested in studying the factors that influence the approval of the student.
6

Regressão binária usando ligações potência e reversa de potência / Binary regression using power and reversal power links

Chumbimune Anyosa, Susan Alicia 07 April 2017 (has links)
Submitted by Ronildo Prado (ronisp@ufscar.br) on 2017-08-17T17:26:59Z No. of bitstreams: 1 DissSACA.pdf: 2241501 bytes, checksum: b88dd9ad345544bce3926b892f257af7 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-08-17T17:27:07Z (GMT) No. of bitstreams: 1 DissSACA.pdf: 2241501 bytes, checksum: b88dd9ad345544bce3926b892f257af7 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-08-17T17:27:13Z (GMT) No. of bitstreams: 1 DissSACA.pdf: 2241501 bytes, checksum: b88dd9ad345544bce3926b892f257af7 (MD5) / Made available in DSpace on 2017-08-17T17:27:20Z (GMT). No. of bitstreams: 1 DissSACA.pdf: 2241501 bytes, checksum: b88dd9ad345544bce3926b892f257af7 (MD5) Previous issue date: 2017-04-07 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / The aim of this dissertation is to study a family of asymmetric link functions for binary regression models under Bayesian approach. Specifically, we present the estimation of parameters of power and reversal power binary regression models considering Hamiltonian Monte Carlo method, on No-U-Turn Sampler extension, and Metropolis-Hastings within Gibbs sampling method. Furthermore, we study a wide variety of model comparison measures, including information criteria and measures of predictive evaluation. A simulation study was conducted in order to research accuracy and efficiency on estimated parameters. Through analysis of educational data we show that models using the proposed link functions perform better fit than models using standard links. / O objetivo desta dissertação é estudar uma família de ligações assimétricas para modelos de regressão binária sob a abordagem bayesiana. Especificamente, apresenta-se a estimação dos parâmetros da família de modelos de regressão binária com funções de ligação potência e reversa de potência considerando o método de estimação Monte Cario Hamiltoniano, na extensão No-U-Turn Sampler, e o método Metropolis-Hastings dentro de Gibbs. Além disso, estudam-se diferentes medidas de comparação de modelos, incluindo critérios de informação e de avaliação preditiva. Um estudo de simulação foi desenvolvido para estudar a acurácia e eficiência nos parâmetros estimados. Através da análise de dados educacionais, mostra-se que os modelos usando as ligações propostas apresentam melhor ajuste do que os modelos usando ligações tradicionais.
7

Regressão binária nas abordagens clássica e Bayesiana / Binary regression in the classical and Bayesian approaches

Amélia Milene Correia Fernandes 16 December 2016 (has links)
Este trabalho tem como objetivo estudar o modelo de regressão binária nas abordagens clássica e bayesiana utilizando as funções de ligações probito, logito, complemento log-log, transformação box-cox e probito-assimétrico. Na abordagem clássica apresentamos as suposições e o procedimento para ajustar o modelo de regressão e verificamos a precisão dos parâmetros estimados, construindo intervalos de confiança e testes de hipóteses. Enquanto que, na inferência bayesiana fizemos um estudo comparativo utilizando duas metodologias. Na primeira metodologia consideramos densidades a priori não informativas e utilizamos o algoritmo Metropolis-Hastings para ajustar o modelo. Na segunda metodologia utilizamos variáveis auxiliares para obter a distribuição a posteriori conhecida, facilitando a implementação do algoritmo do Amostrador de Gibbs. No entanto, a introdução destas variáveis auxiliares podem gerar valores correlacionados, o que leva à necessidade de se utilizar o agrupamento das quantidades desconhecidas em blocos para reduzir a autocorrelação. Através do estudo de simulação mostramos que na inferência clássica podemos usar os critérios AIC e BIC para escolher o melhor modelo e avaliamos se o percentual de cobertura do intervalo de confiança assintótica está de acordo com o esperado na teoria assintótica. Na inferência bayesiana constatamos que o uso de variáveis auxiliares resulta em um algoritmo mais eficiente segundo os critérios: erro quadrático médio (EQM), erro percentual absoluto médio (MAPE) e erro percentual absoluto médio simétrico (SMAPE). Como ilustração apresentamos duas aplicações com dados reais. Na primeira, consideramos um conjunto de dados da variação do Ibovespa e a variação do valor diário do fechamento da cotação do dólar no período de 2013 a 2016. Na segunda aplicação, trabalhamos com um conjunto de dados educacionais (INEP-2013), focando nos estudos das variáveis que influenciam a aprovação do aluno. / The objective of this work is to study the binary regression model under the frequentist and Bayesian approaches using the probit, logit, log-log complement, Box-Cox transformation and skewprobit as link functions. In the classical approach we presented assumpti- ons and procedures used in the regression modeling. We verified the accuracy of the estimated parameters by building confidence intervals and conducting hypothesis tests. In the Bayesian approach we made a comparative study using two methodologies. For the first methodology, we considered non-informative prior distributions and the Metropolis-Hastings algorithm to estimate the model. In the second methodology we used auxiliary variables to obtain the known a posteriori distribution, allowing the use of the Gibbs Sampler algorithm. However, the introduction of these auxiliary variables can generate correlated values and needs the use of clustering of unknown quantities in blocks to reduce the autocorrelation. In the simulation study we used the AIC and BIC information criteria to select the most appropriate model and we evaluated whether the coverage probabilities of the confidence interval is in agre- ement with that expected by the asymptotic theory. In Bayesian approach we found that the inclusion of auxiliary variables in the model results in a more efficient algoritm according to the MSE, MAPE and SMAPE criteria. In this work we also present applications to two real datasets. The first dataset used is the variation of the Ibovespa and variation of the daily value of the American dollar at the time of closing the 2013 to 2016. The second dataset, used is an educational data set (INEP-2013), where we are interested in studying the factors that influence the approval of the student.
8

"Uma aplicação industrial de regressão binária com erros na variável explicativa" / "An industrial application of binary regression with errors-in-variable explanatory"

Favari, Daniel Fernando de 22 June 2006 (has links)
Neste trabalho, aplicamos um modelo de regressão binária com erros de medição na variável explicativa para analisar sistemas de medição do tipo atributo. Para isto, utilizamos o modelo logístico com erros na variável, para o qual obtemos as estimativas de máxima verossimilhança via o algoritmo EM e a matriz de informação de Fisher observada. Além disso, fizemos um estudo de simulação para compararmos o método analítico e os modelos logístico sem erros na variável (ingênuo) e logístico com erros na variável. Finalmente, aplicamos nossa metodologia para avaliarmos um sistema de medição passa/não passa da maior montadora de motores Diesel (MWM International). / In this work, we apply a study of binary regression model with errors-in-variable to analyze attributive measurement systems. For this, we use the logistic model with errors-in-variable to obtain parameter estimates of maximum likelihood through EM algorithm and the observed Fisher information matrix. In addition we do a simulation study to compare analytic method and the logistic model with and without measurement errors-in-variable. Finally, we apply our methodology to evaluate a attributive measurement system for the largest Diesel motor company of the world (MWM International).
9

Regressão binária nas abordagens clássica e bayesiana

Fernandes, Amélia Milene Correia 16 December 2016 (has links)
Submitted by Aelson Maciera (aelsoncm@terra.com.br) on 2017-05-23T16:23:56Z No. of bitstreams: 1 DissAMCF.pdf: 1964890 bytes, checksum: 84bcbd06f74840be6fc5f38659c34c07 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-06-05T19:07:22Z (GMT) No. of bitstreams: 1 DissAMCF.pdf: 1964890 bytes, checksum: 84bcbd06f74840be6fc5f38659c34c07 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-06-05T19:07:28Z (GMT) No. of bitstreams: 1 DissAMCF.pdf: 1964890 bytes, checksum: 84bcbd06f74840be6fc5f38659c34c07 (MD5) / Made available in DSpace on 2017-06-05T19:18:45Z (GMT). No. of bitstreams: 1 DissAMCF.pdf: 1964890 bytes, checksum: 84bcbd06f74840be6fc5f38659c34c07 (MD5) Previous issue date: 2016-12-16 / Não recebi financiamento / The objective of this work is to study the binary regression model under the frequentist and Bayesian approaches using the probit, logit, log-log complement, Box-Cox transformation and skewprobit as link functions. In the classical approach we presented assumpti- ons and procedures used in the regression modeling. We verified the accuracy of the estimated parameters by building confidence intervals and conducting hypothesis tests. In the Bayesian appro- ach we made a comparative study using two methodologies. For the first methodology, we considered non-informative prior dis- tributions and the Metropolis-Hastings algorithm to estimate the model. In the second methodology we used auxiliary variables to obtain the known a posteriori distribution, allowing the use of the Gibbs Sampler algorithm. However, the introduction of these auxiliary variables can generate correlated values and needs the use of clustering of unknown quantities in blocks to reduce the autocorrelation. In the simulation study we used the AIC and BIC information criteria to select the most appropriate model and we evaluated whether the coverage probabilities of the confidence interval is in agre- ement with that expected by the asymptotic theory. In Bayesian approach we found that the inclusion of auxiliary variables in the model results in a more efficient algoritm according to the MSE, MAPE and SMAPE criteria. In this work we also present applications to two real datasets. The first dataset used is the variation of the Ibovespa and variation of the daily value of the American dollar at the time of closing the 2013 to 2016. The second dataset, used is an educational data set (INEP-2013), where we are interested in studying the factors that infuence the approval of the student. / Este trabalho tem como objetivo estudar o modelo de regressão binária nas abordagens clássica e bayesiana utilizando as funcoes de ligacoes probito, logito, complemento log-log, transformaçao box-cox e probito-assimetrico. Na abordagem clássica apresentamos as suposicoes e o procedimento para ajustar o modelo de regressao e verificamos a precisão dos parâmetros estimados, construindo intervalos de confianca e testes de hipóteses. Enquanto que, na inferência bayesiana fizemos um estudo comparativo utilizando duas metodologias. Na primeira metodologia consideramos densidades a priori nao informativas e utilizamos o algoritmo Metropolis-Hastings para ajustar o modelo. Na segunda metodologia utilizamos variáaveis auxiliares para obter a distribuiçcaão a posteriori conhecida, facilitando a implementacão do algoritmo do Amostrador de Gibbs. No entanto, a introduçao destas variaveis auxiliares podem gerar valores correlacionados, o que leva à necessidade de se utilizar o agrupamento das quantidades desconhecidas em blocos para reduzir a autocorrelaçcãao. Atraves do estudo de simulacao mostramos que na inferência classica podemos usar os critérios AIC e BIC para escolher o melhor modelo e avaliamos se o percentual de cobertura do intervalo de confianca assintotica está de acordo com o esperado na teoria assintática. Na inferência bayesiana constatamos que o uso de va-riaáveis auxiliares resulta em um algoritmo mais eficiente segundo os critérios: erro quadrâtico medio (EQM), erro percentual absoluto medio (MAPE) e erro percentual absoluto medio simetrico (SMAPE). Como ilustração apresentamos duas aplicações com dados reais. Na primeira, consideramos um conjunto de dados da variaçao do Ibovespa e a variacao do valor diário do fechamento da cotacao do dólar no período de 2013 a 2016. Na segunda aplicação, trabalhamos com um conjunto de dados educacionais (INEP-2013), focando nos estudos das variaveis que influenciam a aprovacao do aluno.
10

"Uma aplicação industrial de regressão binária com erros na variável explicativa" / "An industrial application of binary regression with errors-in-variable explanatory"

Daniel Fernando de Favari 22 June 2006 (has links)
Neste trabalho, aplicamos um modelo de regressão binária com erros de medição na variável explicativa para analisar sistemas de medição do tipo atributo. Para isto, utilizamos o modelo logístico com erros na variável, para o qual obtemos as estimativas de máxima verossimilhança via o algoritmo EM e a matriz de informação de Fisher observada. Além disso, fizemos um estudo de simulação para compararmos o método analítico e os modelos logístico sem erros na variável (ingênuo) e logístico com erros na variável. Finalmente, aplicamos nossa metodologia para avaliarmos um sistema de medição passa/não passa da maior montadora de motores Diesel (MWM International). / In this work, we apply a study of binary regression model with errors-in-variable to analyze attributive measurement systems. For this, we use the logistic model with errors-in-variable to obtain parameter estimates of maximum likelihood through EM algorithm and the observed Fisher information matrix. In addition we do a simulation study to compare analytic method and the logistic model with and without measurement errors-in-variable. Finally, we apply our methodology to evaluate a attributive measurement system for the largest Diesel motor company of the world (MWM International).

Page generated in 0.0624 seconds