• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelagem digital de atributos de solo da Fazenda Edgárdia - Botucatu-SP / Digital soil attributes modeling of Fazenda Edgárdia - Botucatu-SP

Carvalho, Tânia Maria de [UNESP] 19 December 2016 (has links)
Submitted by TÂNIA MARIA DE CARVALHO null (taniacarvalho2010@gmail.com) on 2017-02-02T19:26:12Z No. of bitstreams: 1 TESE_arquiv.pdf: 4743361 bytes, checksum: 0c094f892ee8b02e1690df7e4438651f (MD5) / Approved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-02-06T16:42:11Z (GMT) No. of bitstreams: 1 carvalho_tm_dr_bot.pdf: 4743361 bytes, checksum: 0c094f892ee8b02e1690df7e4438651f (MD5) / Made available in DSpace on 2017-02-06T16:42:11Z (GMT). No. of bitstreams: 1 carvalho_tm_dr_bot.pdf: 4743361 bytes, checksum: 0c094f892ee8b02e1690df7e4438651f (MD5) Previous issue date: 2016-12-19 / O mapa de solos é uma ferramenta essencial para o planejamento de uso da terra e estudos que envolvem aspectos ambientais relativos a esse importante recurso natural. Técnicas quantitativas e ferramentas de geoprocessamento têm sido aliadas à interpretação dos processos pedogenéticos para possibilitar a elaboração de mapas mais precisos, obtidos por processo mais rápido e menos oneroso. Dentre os modelos aplicados, os denominados modelos híbridos empregam variáveis auxiliares preditoras e autocorrelação espacial, para viabilizar a predição de atributos de solo em locais não amostrados. A iniciativa para mapeamento digital do solo em escala mundial – GlobalSoilMap.net atua no sentido de disponibilizar representações globais de atributos de solo, elaboradas por meio da aplicação de modelo híbrido em dados legados de solos, realizando a prática do Mapeamento Digital de Solos (MDS). Com base nesse princípio, esse trabalho baseou-se na hipótese de que a aplicação da técnica híbrida regressão-krigagem, utilizando dados legados de levantamento de solo e covariáveis de relevo e sensoriamento remoto proveem mapa de atributos de solo representativos de uma área da Cuesta de Botucatu. O modelo foi aplicado localmente, a duas profundidades, para representação contínua do Índice de Avermelhamento (IAV), saturação de bases (V%), teor de areia, teor de argila, CTC e pH dos solos da Fazenda Experimental Edgárdia, para a qual são disponíveis dados de levantamento de solo. As covariáveis preditoras derivadas de um MDE e de imagem orbital foram uniformizadas a uma resolução espacial de 10 m, e os métodos foram selecionados de acordo com a verificação de correlação linear significativa entre atributos e covariáveis e autocorrelação espacial dos atributos ou dos resíduos de regressões lineares múltiplas (RLM). Os dados foram separados em subconjuntos de treinamento e validação. Os coeficientes de correlação entre atributos de solo e covariáveis foram significativos e variaram de -0,40 a 0,51. Os preditores mais correlacionados aos atributos foram Índice Topográfico de Umidade (ITU), Declividade (Decl), Aspecto (Aspc), Elevação (Elev) e índice de vegetação NDVI, sendo os quatro últimos os principais na estimação das frações texturais. Os valores de R² ajustado das RLM, entre 0,10 e 0,36, foram considerados baixos. De modo geral, os mapas de predição expuseram padrões característicos da variação espacial observada nos mapas das covariáveis preditoras, usadas na calibração dos modelos. Foi observado um incremento na acurácia entre as duas etapas do processo de RK, indicando que o mapa final é superior em relação à RLM. No entanto, os modelos apresentaram, de modo geral, um baixo desempenho quando avaliados por meio de validação externa, mesmo com a estratificação em duas áreas mais uniformes em termos de relevo. Os resultados indicaram a limitação do uso de amostragem para fins de levantamento em modelos de predição. Houve ainda dificuldade de aplicação dos modelos em função do contexto litológico complexo e da dinâmica local de formação de solos, que não puderam ser detectadas pelas covariáveis selecionadas. Apesar das limitações, os mapas de predição apresentaram coerência com o conhecimento relativo aos atributos, nas condições locais. / The soil map is an essential tool for land use planning and studies related to environmental aspects of this important natural resource. Quantitative techniques and geoprocessing tools are currently combined with the interpretation of pedogenic processes to enable the development of more accurate maps obtained by faster and less costly process. Among the models applied to it, the hybrid models employ predictive auxiliary variables and spatial autocorrelation, to enable the prediction of soil attributes in unsampled locations. The digital soil mapping worldwide project – GlobalSoilMap.net acts in order to provide global representations of soil attributes developed through the application of hybrid model in legacy soil data, performing the practice of Digital Soil Mapping (MDS). This work was based on the assumption that the application of the hybrid technique of regression-kriging (RK), using legacy data of soil survey and covariates of relief and remote sensing provide representative map of soil attributes of an area in Cuesta of Botucatu. The goal was to apply locally, in two depths, prediction models and continuous representation of Soil Redness Index (IAV), base saturation index (V%), sand content and clay content, cation-exchange capacity (CTC) and pH of the soils in Edgardia Experimental Farm, for which are available soil survey data. The predictor covariates were derived from an Digital Elevation Model (MDE) and an orbital image. They were all standardized at spatial resolution of 10 m, the methods were selected by checking significant linear correlation between attributes and covariates and spatial autocorrelation of attributes or residues of multiple linear regressions (RLM). The data were separated into training and validation subsets. The correlation coefficients (r) between soil attributes and covariates were significant and ranged from -0.40 to 0.51. The predictors more correlated to attributes were topographic wetness index (ITU), slope (Decl), aspect (Aspc), elevation (Elev) and vegetation index (NDVI), and the last four are key definers of granulometric fractions. The values of adjusted R² of RLM were between 0.10 and 0.36, which is considered low. In general, the prediction maps exhibited characteristic patterns of spatial variation observed in the covariates maps, used in the calibration of the models. An increase in accuracy was observed between the two steps of the modeling process by RK, indicating that the final map is better than the RLM. However, the models showed generally low performance, and did not provide good results when evaluated by external validation and even if the area was stratified in two smaller plots, with more homogeneous relief. The results indicated the restricted use of soil survey sampling in prediction models, and the difficulty of applying MDS in areas with complex lithology, especially where the correlation between local dynamics of soil genesis and selected covariates are not strong. Despite the limitations, the prediction maps were consistent with knowledge about soil properties in local conditions.
2

Analýza výskytu extremálních hodnot v čase a prostoru / Analysis of occurrence of extremal values in time and space

Starý, Ladislav January 2015 (has links)
This thesis describes and compares methods for statistical modeling of spatio- temporal data. Methods are extended by examples and numerical studies on real world data. Basic point of interest is statistical analysis of spatial data with unknown correlation structure and known position in space. Further analysis is focused on spatial data with temporal component - spatio-temporal data. Fi- nally, extremal values and their occurrences are discussed. The main aspiration of my thesis is to provide statistical tools for spatio-temporal data and analysis of extremal values of prediction. 1
3

Mapeamento digital da fertilidade do solo das regiões Norte, Noroeste e Serrana do Estado do Rio de Janeiro

Andrade, Sandra Fernandes de 06 March 2018 (has links)
Submitted by Biblioteca de Pós-Graduação em Geoquímica BGQ (bgq@ndc.uff.br) on 2018-03-06T16:22:51Z No. of bitstreams: 1 TESE_SANDRA_FERNANDES_ANDRADE.pdf: 6238564 bytes, checksum: c11933fcb48773bb165ea782a4942d4e (MD5) / Made available in DSpace on 2018-03-06T16:22:51Z (GMT). No. of bitstreams: 1 TESE_SANDRA_FERNANDES_ANDRADE.pdf: 6238564 bytes, checksum: c11933fcb48773bb165ea782a4942d4e (MD5) / Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro / Universidade Federal Fluminense. Instituto de Química. Programa de Pós-Graduação em Geoquímica, Niterói, RJ / O Mapeamento Digital de Solo (DSM) está evoluindo muito nas últimas décadas, desde a fase de investigação até a produção de mapas em diversas escalas, abrangendo países, regiões e bacias hidrográficas. A predição de classes e propriedades de solos no mapeamento digital fundamenta-se nas relações existentes entre os fatores e processos de formação dos solos. O conhecimento dos atributos químicos dos solos é um fator de grande relevância, visando a utilização racional de corretivos e fertilizantes. O trabalho objetivou realizar a modelagem solo-paisagem de variáveis químicas de fertilidade do solo, a saber, pH em água, Pass(mg/kg), K+(cmolc/kg), C(g/kg), CTC(cmolc/kg), V% e Al(m)%, usando como preditoras as variáveis ambientais Plano de Curvatura, Perfil de Curvatura, Índice de Umidade, Aspecto, Declividade, Tipos de Solo, NDVI, Imagens Landsat 7 (bandas 2, 4 e 7) e Litologia. A área de estudo compreende as regiões mais produtivas do Estado do Rio de Janeiro: Norte, Noroeste e Serrana, entre as coordenadas 43°22´35´´; 40°57´27´´WG, e 20°45´47´´; 22°34´21´´S, com 22.043 km2. Os dados de solos foram extraídos de um banco de dados maior, cedido pela Embrapa Solos. A análise exploratória dos dois bancos de dados identificou valores extremos, que foram expurgados, para manter as características de fertilidade natural e a homogeneidade da amostra, preparando a análise por regressão linear múltipla (RLM). Os parâmetros estatísticos analisados para avaliação dos modelos de RLM foram: AIC, RMSE, Cp, R2 ajustado, F e a probabilidade de F. Aos resultados da RLM, foram adicionados os resultados de krigagem dos resíduos da regressão, uma técnica de DSM conhecida como R+K, que se mostrou um método adequado para o mapeamento digital de propriedades do solo, neste trabalho. Os solos analisados apresentam baixo pH e altos níveis de saturação por Al, bem como baixas concentrações de fósforo assimilável. Os valores de CTC e V(%) estão dentro do intervalo considerado bom para a fertilidade do solo, segundo dados da literatura. O carbono apresentou níveis considerados bons para a fertilidade do solo, principalmente, nas áreas de baixada da região Norte. Não foi possível realizar uma síntese de fertilidade do solo considerando simultaneamente todas as variáveis estudadas, pois elas não se distribuem espacialmente dentro dos critérios de boa fertilidade preconizados na literatura. Entretanto, foi possível a realização de dois mapas-sínteses, aproveitando a boa correlação entre CTC e K+ e entre pH e V%. O primeiro mapa-síntese, com as variáveis K+ e CTC, identificou, na região da baixada Norte fluminense uma faixa considerada boa para a fertilidade do solo. O segundo mapa-síntese, com as variáveis pH e V%, mostra que as regiões com boa fertilidade do solo coincidem com as regiões de médio e alto valores de V% e com valores também mais elevados de pH, o que ocorre, principalmente, na região Noroeste. As regiões que foram consideradas de baixa fertilidade coincidem com regiões de pH ácido, principalmente nas regiões Serrana e Norte. / Soil Digital Mapping (DSM) has been evolving over the past decades, from the investigation period to the production of maps in several scales, covering countries, regions and hydrographic basins. The prediction of classes and properties of the soils at the digital mapping is based on the existing relations between the factors and processes on the soil formation. The knowledge of the chemical qualities of the soil is a key point, aiming the rational use of correctives and fertilizers. This thesis had the objective of modeling the chemical variables of soil fertility, namely:pH in water, Pass(mg/kg), K+(cmolc/kg), C(g/kg), CEC(cmolc/kg), V% and Al(m)%, using as predictors the curvature plan and curvature profile, , aspect and declivity of the slopes, types of soil and its humidity level, NDVI, Landsat 7 images (2,4 and 7 bands) and litology. The area of study encompasses the most productive regions of Rio de Janeiro State: North, Northwest and Mountaineous, at 43°22´35´´; 40°57´27´´WG, e 20°45´47´´; 22°34´21´´S, covering 22,043 km2. Soil idata was taken from a wider database, provided by Embrapa Solos. The exploratory analyses of the two databases identified extreme values, that were discarded, to keep the characteristics of natural fertility and homogeneity of the sample, preparing the analyses by multiple linear regression (MLR). The statistic parameters analyzed by MLR models were: AIC, RMSE, Cp, adjusted R2, F and F probability. The results of the MLR were added to the results of the krigage of regression residue, a DSM technic known as R+K, that seemed to be an adequate method for digital mapping of soil properties, at this work. The analyzed soils showed low pH and high levels of Al saturation, as well as low concentrations of assimilative phosphorus. The CEC and V (%) values are on a good range to soil fertility, according to literature data. Carbon showed good levels for soil fertility, especially at the low terrains of the North region. It was not possible to achieve a synthesis of the soil fertility considering simultaneously all the studied varieties, since they are not homogeneous spatially. However, it was possible to make two synthesis-maps, using the good correlation between CEC and K+ and between pH and V%. The first synthesis-map, with the variegated K+ and CEC, identified, at the area of low lands of North of Rio de Janeiro State a lane considered good for soil fertility. The second synthesis-map, with the variegated pH and V%, shows that the areas with good soil fertility are the same of the areas of medium and high values of V% and with higher values of pH, which happens mainly at the Northwest. The areas that were considered with low fertility are the same with acid pH, specially the North and Mountaineous areas.
4

Assessing and Improving Methods for the Effective Use of Landsat Imagery for Classification and Change Detection in Remote Canadian Regions

He, Juan Xia January 2016 (has links)
Canadian remote areas are characterized by a minimal human footprint, restricted accessibility, ubiquitous lichen/snow cover (e.g. Arctic) or continuous forest with water bodies (e.g. Sub-Arctic). Effective mapping of earth surface cover and land cover changes using free medium-resolution Landsat images in remote environments is a challenge due to the presence of spectrally mixed pixels, restricted field sampling and ground truthing, and the often relatively homogenous cover in some areas. This thesis investigates how remote sensing methods can be applied to improve the capability of Landsat images for mapping earth surface features and land cover changes in Canadian remote areas. The investigation is conducted from the following four perspectives: 1) determining the continuity of Landsat-8 images for mapping surficial materials, 2) selecting classification algorithms that best address challenges involving mixed pixels, 3) applying advanced image fusion algorithms to improve Landsat spatial resolution while maintaining spectral fidelity and reducing the effects of mixed pixels on image classification and change detection, and, 4) examining different change detection techniques, including post-classification comparisons and threshold-based methods employing PCA(Principal Components Analysis)-fused multi-temporal Landsat images to detect changes in Canadian remote areas. Three typical landscapes in Canadian remote areas are chosen in this research. The first is located in the Canadian Arctic and is characterized by ubiquitous lichen and snow cover. The second is located in the Canadian sub-Arctic and is characterized by well-defined land features such as highlands, ponds, and wetlands. The last is located in a forested highlands region with minimal built-environment features. The thesis research demonstrates that the newly available Landsat-8 images can be a major data source for mapping Canadian geological information in Arctic areas when Landsat-7 is decommissioned. In addition, advanced classification techniques such as a Support-Vector-Machine (SVM) can generate satisfactory classification results in the context of mixed training data and minimal field sampling and truthing. This thesis research provides a systematic investigation on how geostatistical image fusion can be used to improve the performance of Landsat images in identifying surface features. Finally, SVM-based post-classified multi-temporal, and threshold-based PCA-fused bi-temporal Landsat images are shown to be effective in detecting different aspects of vegetation change in a remote forested region in Ontario. This research provides a comprehensive methodology to employ free Landsat images for image classification and change detection in Canadian remote regions.

Page generated in 0.1036 seconds