• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Energy-efficient Scheduling for Heterogeneous Servers in the Dark Silicon Era

January 2015 (has links)
abstract: Driven by stringent power and thermal constraints, heterogeneous multi-core processors, such as the ARM big-LITTLE architecture, are becoming increasingly popular. In this thesis, the use of low-power heterogeneous multi-cores as Microservers using web search as a motivational application is addressed. In particular, I propose a new family of scheduling policies for heterogeneous microservers that assign incoming search queries to available cores so as to optimize for performance metrics such as mean response time and service level agreements, while guaranteeing thermally-safe operation. Thorough experimental evaluations on a big-LITTLE platform demonstrate, on an heterogeneous eight-core Samsung Exynos 5422 MpSoC, with four big and little cores each, that naive performance oriented scheduling policies quickly result in thermal instability, while the proposed policies not only reduce peak temperature but also achieve 4.8x reduction in processing time and 5.6x increase in energy efficiency compared to baseline scheduling policies. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2015
2

Large scale congurable text matching for detection of log changes and anomalies

Larsson, Daniel January 2019 (has links)
Manually analysing logfiles is a very time consuming and error-prone effort. By developing a system to automatically analysing the logfiles it is possible to both increase the speed and accuracy of the analysis. This thesis presents a method for automatic anomaly detection in logfiles using statistical analysis and threshold based classification. The presented method uses five different threshold based approaches to identify anomalous entries within a logfile. Each of the five approaches was successful in identifying and reporting perceived anomalies within 805 logfiles provided by Sandvine, it was however not possible to do a formal evaluation of the results due to a lack of a ground truth.
3

Wearable Fall Detection using Barometric Pressure Sensor

Liu, Congrui January 2017 (has links)
Wearable wireless sensor devices, which are implemented by deploying sensor nodes on objects, are widely utilized in a broad field of applica-tions, especially in the healthcare system for improving the quality of life or monitoring different types of physical data from the observed objects. The aim of this study is to design an in-home, small-size and long-term wearable fall detection system in wireless network by using barometric pressure sensing for elderly or patient who needs healthcare monitoring. This threshold-based fall detection system is to measure the altitude of different positions on the human body, and detect the fall event from that altitude information. As a surveillance system, it would trigger an alert when the fall event occurs so that to protect people from the potential life risk by immediate rescue and treatment. After all the performances evaluation, the measurement result shows that standing, sitting and fall state was detected with 100% accuracy and lying on bed state was detected with 93.3% accuracy by using this wireless fall detection system. Furthermore, this system with low power consumption on battery-node can operate continuously up to 150 days.
4

Assessing and Improving Methods for the Effective Use of Landsat Imagery for Classification and Change Detection in Remote Canadian Regions

He, Juan Xia January 2016 (has links)
Canadian remote areas are characterized by a minimal human footprint, restricted accessibility, ubiquitous lichen/snow cover (e.g. Arctic) or continuous forest with water bodies (e.g. Sub-Arctic). Effective mapping of earth surface cover and land cover changes using free medium-resolution Landsat images in remote environments is a challenge due to the presence of spectrally mixed pixels, restricted field sampling and ground truthing, and the often relatively homogenous cover in some areas. This thesis investigates how remote sensing methods can be applied to improve the capability of Landsat images for mapping earth surface features and land cover changes in Canadian remote areas. The investigation is conducted from the following four perspectives: 1) determining the continuity of Landsat-8 images for mapping surficial materials, 2) selecting classification algorithms that best address challenges involving mixed pixels, 3) applying advanced image fusion algorithms to improve Landsat spatial resolution while maintaining spectral fidelity and reducing the effects of mixed pixels on image classification and change detection, and, 4) examining different change detection techniques, including post-classification comparisons and threshold-based methods employing PCA(Principal Components Analysis)-fused multi-temporal Landsat images to detect changes in Canadian remote areas. Three typical landscapes in Canadian remote areas are chosen in this research. The first is located in the Canadian Arctic and is characterized by ubiquitous lichen and snow cover. The second is located in the Canadian sub-Arctic and is characterized by well-defined land features such as highlands, ponds, and wetlands. The last is located in a forested highlands region with minimal built-environment features. The thesis research demonstrates that the newly available Landsat-8 images can be a major data source for mapping Canadian geological information in Arctic areas when Landsat-7 is decommissioned. In addition, advanced classification techniques such as a Support-Vector-Machine (SVM) can generate satisfactory classification results in the context of mixed training data and minimal field sampling and truthing. This thesis research provides a systematic investigation on how geostatistical image fusion can be used to improve the performance of Landsat images in identifying surface features. Finally, SVM-based post-classified multi-temporal, and threshold-based PCA-fused bi-temporal Landsat images are shown to be effective in detecting different aspects of vegetation change in a remote forested region in Ontario. This research provides a comprehensive methodology to employ free Landsat images for image classification and change detection in Canadian remote regions.
5

Statistical properties of parasite density estimators in malaria and field applications / Propriétés statistiques des estimateurs de la densité parasitaire dans les études portant sur le paludisme et applications opérationnelles

Hammami, Imen 24 June 2013 (has links)
Pas de résumé en français / Malaria is a devastating global health problem that affected 219 million people and caused 660,000 deaths in 2010. Inaccurate estimation of the level of infection may have adverse clinical and therapeutic implications for patients, and for epidemiological endpoint measurements. The level of infection, expressed as the parasite density (PD), is classically defined as the number of asexual parasites relative to a microliter of blood. Microscopy of Giemsa-stained thick blood smears (TBSs) is the gold standard for parasite enumeration. Parasites are counted in a predetermined number of high-power fields (HPFs) or against a fixed number of leukocytes. PD estimation methods usually involve threshold values; either the number of leukocytes counted or the number of HPFs read. Most of these methods assume that (1) the distribution of the thickness of the TBS, and hence the distribution of parasites and leukocytes within the TBS, is homogeneous; and that (2) parasites and leukocytes are evenly distributed in TBSs, and thus can be modeled through a Poisson-distribution. The violation of these assumptions commonly results in overdispersion. Firstly, we studied the statistical properties (mean error, coefficient of variation, false negative rates) of PD estimators of commonly used threshold-based counting techniques and assessed the influence of the thresholds on the cost-effectiveness of these methods. Secondly, we constituted and published the first dataset on parasite and leukocyte counts per HPF. Two sources of overdispersion in data were investigated: latent heterogeneity and spatial dependence. We accounted for unobserved heterogeneity in data by considering more flexible models that allow for overdispersion. Of particular interest were the negative binomial model (NB) and mixture models. The dependent structure in data was modeled with hidden Markov models (HMMs). We found evidence that assumptions (1) and (2) are inconsistent with parasite and leukocyte distributions. The NB-HMM is the closest model to the unknown distribution that generates the data. Finally, we devised a reduced reading procedure of the PD that aims to a better operational optimization and a practical assessing of the heterogeneity in the distribution of parasites and leukocytes in TBSs. A patent application process has been launched and a prototype development of the counter is in process.
6

Statistical properties of parasite density estimators in malaria and field applications

Hammami, Imen 24 June 2013 (has links) (PDF)
Malaria is a devastating global health problem that affected 219 million people and caused 660,000 deaths in 2010. Inaccurate estimation of the level of infection may have adverse clinical and therapeutic implications for patients, and for epidemiological endpoint measurements. The level of infection, expressed as the parasite density (PD), is classically defined as the number of asexual parasites relative to a microliter of blood. Microscopy of Giemsa-stained thick blood smears (TBSs) is the gold standard for parasite enumeration. Parasites are counted in a predetermined number of high-power fields (HPFs) or against a fixed number of leukocytes. PD estimation methods usually involve threshold values; either the number of leukocytes counted or the number of HPFs read. Most of these methods assume that (1) the distribution of the thickness of the TBS, and hence the distribution of parasites and leukocytes within the TBS, is homogeneous; and that (2) parasites and leukocytes are evenly distributed in TBSs, and thus can be modeled through a Poisson-distribution. The violation of these assumptions commonly results in overdispersion. Firstly, we studied the statistical properties (mean error, coefficient of variation, false negative rates) of PD estimators of commonly used threshold-based counting techniques and assessed the influence of the thresholds on the cost-effectiveness of these methods. Secondly, we constituted and published the first dataset on parasite and leukocyte counts per HPF. Two sources of overdispersion in data were investigated: latent heterogeneity and spatial dependence. We accounted for unobserved heterogeneity in data by considering more flexible models that allow for overdispersion. Of particular interest were the negative binomial model (NB) and mixture models. The dependent structure in data was modeled with hidden Markov models (HMMs). We found evidence that assumptions (1) and (2) are inconsistent with parasite and leukocyte distributions. The NB-HMM is the closest model to the unknown distribution that generates the data. Finally, we devised a reduced reading procedure of the PD that aims to a better operational optimization and a practical assessing of the heterogeneity in the distribution of parasites and leukocytes in TBSs. A patent application process has been launched and a prototype development of the counter is in process.

Page generated in 0.0571 seconds