• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Integration of TP53, DREAM, MMB-FOXM1 and RB-E2F target gene analyses identifies cell cycle gene regulatory networks

Fischer, Martin, Grossmann, Patrick, Padi, Megha, DeCaprio, James A. 27 June 2016 (has links) (PDF)
Cell cycle (CC) and TP53 regulatory networks are frequently deregulated in cancer. While numerous genome-wide studies of TP53 and CC-regulated genes have been performed, significant variation between studies has made it difficult to assess regulation of any given gene of interest. To overcome the limitation of individual studies, we developed a meta-analysis approach to identify high confidence target genes that reflect their frequency of identification in independent datasets. Gene regulatory networks were generated by comparing differential expression of TP53 and CC-regulated genes with chromatin immunoprecipitation studies for TP53, RB1, E2F, DREAM, B-MYB, FOXM1 and MuvB. RNA-seq data from p21-null cells revealed that gene downregulation by TP53 generally requires p21 (CDKN1A). Genes downregulated by TP53 were also identified as CC genes bound by the DREAM complex. The transcription factors RB, E2F1 and E2F7 bind to a subset of DREAM target genes that function in G1/S of the CC while B-MYB, FOXM1 and MuvB control G2/M gene expression. Our approach yields high confidence ranked target gene maps for TP53, DREAM, MMB-FOXM1 and RB-E2F and enables prediction and distinction of CC regulation. A web-based atlas at www.targetgenereg.org enables assessing the regulation of any human gene of interest.
2

Integration of TP53, DREAM, MMB-FOXM1 and RB-E2F target gene analyses identifies cell cycle gene regulatory networks

Fischer, Martin, Grossmann, Patrick, Padi, Megha, DeCaprio, James A. January 2016 (has links)
Cell cycle (CC) and TP53 regulatory networks are frequently deregulated in cancer. While numerous genome-wide studies of TP53 and CC-regulated genes have been performed, significant variation between studies has made it difficult to assess regulation of any given gene of interest. To overcome the limitation of individual studies, we developed a meta-analysis approach to identify high confidence target genes that reflect their frequency of identification in independent datasets. Gene regulatory networks were generated by comparing differential expression of TP53 and CC-regulated genes with chromatin immunoprecipitation studies for TP53, RB1, E2F, DREAM, B-MYB, FOXM1 and MuvB. RNA-seq data from p21-null cells revealed that gene downregulation by TP53 generally requires p21 (CDKN1A). Genes downregulated by TP53 were also identified as CC genes bound by the DREAM complex. The transcription factors RB, E2F1 and E2F7 bind to a subset of DREAM target genes that function in G1/S of the CC while B-MYB, FOXM1 and MuvB control G2/M gene expression. Our approach yields high confidence ranked target gene maps for TP53, DREAM, MMB-FOXM1 and RB-E2F and enables prediction and distinction of CC regulation. A web-based atlas at www.targetgenereg.org enables assessing the regulation of any human gene of interest.
3

Estimating Gene Regulatory Activity using Mathematical Optimization

Trescher, Saskia 28 September 2020 (has links)
Die Regulation der Genexpression ist einer der wichtigsten zellulären Prozesse und steht in Zusammenhang mit der Entstehung diverser Krankheiten. Regulationsmechanismen können mit einer Vielzahl von Methoden experimentell untersucht werden, zugleich erfordert die Integration der Datensätze in umfassende Modelle stringente rechnergestützte Methoden. Ein Teil dieser Methoden modelliert die genomweite Genexpression als (lineares) Gleichungssystem über die Aktivität und Beziehungen von Transkriptionsfaktoren (TF), Genen und anderen Faktoren und optimiert die Parameter, sodass die gemessenen Expressionsintensitäten möglichst genau wiedergegeben werden. Trotz ihrer gemeinsamen Wurzeln in der mathematischen Optimierung unterscheiden sich die Methoden stark in der Art der integrierten Daten, im für ihre Anwendung notwendigen Hintergrundwissen, der Granularität des Regulationsmodells, des konkreten Paradigmas zur Lösung des Optimierungsproblems, und der zur Evaluation verwendeten Datensätze. In dieser Arbeit betrachten wir fünf solcher Methoden und stellen einen qualitativen und quantitativen Vergleich auf. Unsere Ergebnisse zeigen, dass die Überschneidungen der Ergebnisse sehr gering sind, was nicht auf die Stichprobengröße oder das regulatorische Netzwerk zurückgeführt werden kann. Ein Grund für die genannten Defizite könnten die vereinfachten Modelle zellulärer Prozesse sein, da diese vorhandene Rückkopplungsschleifen ignorieren. Wir schlagen eine neue Methode (Florae) mit Schwerpunkt auf die Berücksichtigung von Rückkopplungsschleifen vor und beurteilen deren Ergebnisse. Mit Floræ können wir die Identifizierung von Knockout- und Knockdown-TF in synthetischen Datensätzen verbessern. Unsere Ergebnisse und die vorgeschlagene Methode erweitern das Wissen über genregulatorische Aktivität können die Identifizierung von Ursachen und Mechanismen regulatorischer (Dys-)Funktionen und die Entwicklung von medizinischen Biomarkern und Therapien unterstützen. / Gene regulation is one of the most important cellular processes and closely interlinked pathogenesis. The elucidation of regulatory mechanisms can be approached by many experimental methods, yet integration of the resulting heterogeneous, large, and noisy data sets into comprehensive models requires rigorous computational methods. A prominent class of methods models genome-wide gene expression as sets of (linear) equations over the activity and relationships of transcription factors (TFs), genes and other factors and optimizes parameters to fit the measured expression intensities. Despite their common root in mathematical optimization, they vastly differ in the types of experimental data being integrated, the background knowledge necessary for their application, the granularity of their regulatory model, the concrete paradigm used for solving the optimization problem and the data sets used for evaluation. We review five recent methods of this class and compare them qualitatively and quantitatively in a unified framework. Our results show that the result overlaps are very low, though sometimes statistically significant. This poor overall performance cannot be attributed to the sample size or to the specific regulatory network provided as background knowledge. We suggest that a reason for this deficiency might be the simplistic model of cellular processes in the presented methods, where TF self-regulation and feedback loops were not represented. We propose a new method for estimating transcriptional activity, named Florae, with a particular focus on the consideration of feedback loops and evaluate its results. Using Floræ, we are able to improve the identification of knockout and knockdown TFs in synthetic data sets. Our results and the proposed method extend the knowledge about gene regulatory activity and are a step towards the identification of causes and mechanisms of regulatory (dys)functions, supporting the development of medical biomarkers and therapies.

Page generated in 0.0944 seconds