1 |
The implications of compartment fire non-uniformity for the membrane action of reinforced concrete slabsDeeny, Susan January 2011 (has links)
Maintaining structural stability is an integral component of building fire safety. Stability must be ensured to provide adequate time for safe egress of the buildings occupants, fire fighting operations and property protection. Structural fire engineering endeavours to design structures to withstand the effects of fire in order to achieve this objective. The behaviour of reinforced concrete in fire is not as well understood as other construction materials, such as steel. This is in part due to the complexity of concrete material behaviour and also due to concrete’s reputation of superior fire performance. Concrete technology is, however, continually evolving; structures are increasingly slender, more highly stressed and have higher compressive strengths. A more robust understanding of concrete’s behaviour in fire will enable predictions of the implications of changing concrete technology and also help to properly quantify the fire safety risk associated with concrete structures. A fundamental key to understanding structural fire performance is the relationship between the thermal environment induced by the fire and the structure. Significant thermal variation has been found experimentally to exist within fire compartments. Despite this the design of structures for fire almost universally assumes the compartment thermal environment to be homogeneous. In this thesis the implications of compartment fire non-uniformity for concrete structural behaviour is investigated to assess the validity of the uniform compartment temperature assumption. The investigation is conducted using numerical tools; a detailed review of the necessary background knowledge, material modelling of reinforced concrete, finite element modelling of reinforced concrete structures and compartment fire thermal variation is included. The behaviour of a two-way spanning reinforced concrete slab is used as a structural benchmark. The membrane behaviour exhibited by two-way spanning RC slabs at high temperatures has been previously studied under uniform thermal conditions. They therefore are an ideal benchmark for identifying the influence of non-uniform thermal environments for behaviour. The relationship between gas phase temperature variation and concrete thermal expansion behaviour, which is fundamental to understanding concrete high temperature structural behaviour, is first investigated. These preliminary studies provide the necessary fundamental understanding to identify the influence of gas phase temperature variation upon the membrane behaviour of reinforced concrete slabs. The individual influences of spatial and temporal variation upon slab membrane behaviour are investigated and the behaviour under non-uniform thermal variation contrasted with uniform thermal exposure behaviour. The influence of spatial variation of temperature is found to be strongly dependent upon the structural slenderness ratio. The tensile membrane action of slender slabs is particularly susceptible to the distorted slab deflection profiles induced by spatial variation of gas temperature. Conversely the compressive membrane behaviour of stocky slabs is found to be insensitive to the deformation effects induced by spatial variation of temperature. The influence upon slender slabs is demonstrated under a range of temporal variations indicating that the thermal response of concrete is sufficiently fast to be sensitive to realistically varying distributions of temperature. Contrasting behaviour induced by uniform and non-uniform thermal exposures indicates that uniform temperature assumptions provide both conservative and unconservative predictions of behaviour. The accuracy of the uniform temperature assumptions was also found to be dependent upon the type of fire, for example, fast hot and short cool fires. Additionally, the sensitivity of structural performance to deformations caused by spatial variation of temperature demonstrated in this thesis challenges the purely strength based focus of traditional structural fire engineering. Spalling is an important feature of concrete’s high temperature behaviour which is not currently explicitly addressed in design. The incorporation of spalling into structural analysis is not, however, straightforward. The influence of spalling upon behaviour has therefore been dealt with separately. A spalling design framework is developed to incorporate the effects of spalling into a structural analysis. Application of the framework to case studies demonstrates the potential for spalling to critically undermine the structural performance of concrete in fire. It also demonstrates how the framework can be used to quantify the effects of spalling and therefore account for these in the structural fire design addressing spalling risk in a rational manner.
|
2 |
Membrane action in simply supported slabsAlmograbi, Mohammed F. January 1999 (has links)
No description available.
|
3 |
Behaviour of continuous concrete slabs reinforced with FRP bars : experimental and computational investigations on the use of basalt and carbon fibre reinforced polymer bars in continuous concrete slabsMahroug, Mohamed Elarbi Moh January 2013 (has links)
An investigation on the application of basalt fibre reinforced polymer (BFRP) and carbon fibre reinforced polymer (CFRP) bars as longitudinal reinforcement for simple and continuous concrete slabs is presented. Eight continuously and four simply concrete slabs were constructed and tested to failure. Two continuously supported steel reinforced concrete slabs were also tested for comparison purposes. The slabs were classified into two groups according to the type of FRP bars. All slabs tested were 500 mm in width and 150 mm in depth. The simply supported slabs had a span of 2000 mm, whereas the continuous slabs had two equal spans, each of 2000 mm. Different combinations of under and over FRP (BFRP/CFRP) reinforcement at the top and bottom layers of slabs were investigated. The continuously supported BFRP and CFRP reinforced concrete slabs exhibited larger deflections and wider cracks than the counterpart reinforced with steel. The experimental results showed that increasing the bottom mid-span FRP reinforcement of continuous slabs is more effective than the top over middle support FRP reinforcement in improving the load capacity and reducing mid-span deflections. Design guidelines have been validated against experimental results of FRP reinforced concrete slabs tested. ISIS-M03-07 and CSA S806-06 equations reasonably predicted the deflections of the slabs tested. However, ACI 440-1R-06 underestimated the deflections, overestimated the moment capacities at mid-span and over support sections, and reasonably predicted the load capacity of the continuous slabs tested. On the analytical side, a numerical technique consisting of sectional and longitudinal analyses has been developed to predict the moment-curvature relationship, moment capacity and load-deflection of FRP reinforced concrete members. The numerical technique has been validated against the experimental test results obtained from the current research and those reported in the literature. A parametric study using the numerical technique developed has also been conducted to examine the influence of FRP reinforcement ratio, concrete compressive strength and type of reinforcement on the performance of continuous FRP reinforced concrete slabs. Increasing the concrete compressive strength decreased the curvature of the reinforced section with FRP bars. Moreover, in the simple and continuous FRP reinforced concrete slabs, increasing the FRP reinforcement at the bottom layer fairly reduced and controlled deflections.
|
4 |
Behaviour of continuous concrete slabs reinforced with FRP bars. Experimental and computational investigations on the use of basalt and carbon fibre reinforced polymer bars in continuous concrete slabs.Mahroug, Mohamed E.M. January 2013 (has links)
An investigation on the application of basalt fibre reinforced polymer (BFRP) and carbon fibre reinforced polymer (CFRP) bars as longitudinal reinforcement for simple and continuous concrete slabs is presented. Eight continuously and four simply concrete slabs were constructed and tested to failure. Two continuously supported steel reinforced concrete slabs were also tested for comparison purposes. The slabs were classified into two groups according to the type of FRP bars. All slabs tested were 500 mm in width and 150 mm in depth. The simply supported slabs had a span of 2000 mm, whereas the continuous slabs had two equal spans, each of 2000 mm. Different combinations of under and over FRP (BFRP/CFRP) reinforcement at the top and bottom layers of slabs were investigated. The continuously supported BFRP and CFRP reinforced concrete slabs exhibited larger deflections and wider cracks than the counterpart reinforced with steel. The experimental results showed that increasing the bottom mid-span FRP reinforcement of continuous slabs is more effective than the top over middle support FRP reinforcement in improving the load capacity and reducing mid-span deflections.
Design guidelines have been validated against experimental results of FRP reinforced concrete slabs tested. ISIS¿M03¿07 and CSA S806-06 equations reasonably predicted the deflections of the slabs tested. However, ACI 440¿1R-06 underestimated the deflections, overestimated the moment capacities at mid-span and over support sections, and reasonably predicted the load capacity of the continuous slabs tested.
On the analytical side, a numerical technique consisting of sectional and longitudinal analyses has been developed to predict the moment¿curvature relationship, moment capacity and load-deflection of FRP reinforced concrete members. The numerical technique has been validated against the experimental test results obtained from the current research and those reported in the literature. A parametric study using the numerical technique developed has also been conducted to examine the influence of FRP reinforcement ratio, concrete compressive strength and type of reinforcement on the performance of continuous FRP reinforced concrete slabs. Increasing the concrete compressive strength decreased the curvature of the reinforced section with FRP bars. Moreover, in the simple and continuous FRP reinforced concrete slabs, increasing the FRP reinforcement at the bottom layer fairly reduced and controlled deflections.
|
5 |
Efeito da resist?ncia ao cisalhamento do concreto na flex?o de lajes de concreto armadoRocha, M?rcurie Janeai Mateus Araujo 04 September 2017 (has links)
Submitted by Luis Ricardo Andrade da Silva (lrasilva@uefs.br) on 2017-11-28T23:42:31Z
No. of bitstreams: 1
Dissertacao - Mercurie Janeai Mateus Araujo Rocha.pdf: 2758370 bytes, checksum: 944f4fc5f24c7c08b8ca7abcf999414a (MD5) / Made available in DSpace on 2017-11-28T23:42:31Z (GMT). No. of bitstreams: 1
Dissertacao - Mercurie Janeai Mateus Araujo Rocha.pdf: 2758370 bytes, checksum: 944f4fc5f24c7c08b8ca7abcf999414a (MD5)
Previous issue date: 2017-09-04 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES / In this work the influence of the shear strength of the concrete in the bending of reinforced concrete slabs was studied through two models of analysis. The first model (proposed model 1) combines an isotropic damage model for concrete, proposed by Oliver et al., and the perfect elastoplastic model for steel reinforcement. The second model (proposed model 2), which is in fact a modification of the previous model, introduces a unique damaging to the concrete transverse modulus of elasticity, based on a proposal by Matzenbacher. The behavior of slabs was simulated through the Classical Theory of Laminates and the variational formulation of the problem was developed through the Principle of Virtual Works. The numerical treatment of the problem was based on the Finite Element Method, using a finite rectangular element with 24 degrees of freedom, incorporating Newton-Raphson's incremental-iterative process with load control and displacement control. The validation of the two models was based on the simulation of four rectangular slabs under bending, whose analysis revealed that it is essential to damage the concrete modulus of elasticity when using the damage mechanics. / Neste trabalho foi estudada a influ?ncia da resist?ncia ao cisalhamento do concreto na flex?o de lajes de concreto armado, atrav?s de dois modelos de an?lise. O primeiro modelo (modelo proposto 1) combina um modelo de dano isotr?pico para o concreto, proposto por Oliver e colaboradores, e o modelo elastopl?stico perfeito para o a?o das armaduras. O segundo modelo (modelo proposto 2), que na verdade ? uma modifica??o do modelo anterior, introduz uma danifica??o exclusiva para o m?dulo de elasticidade transversal do concreto, baseado em uma proposta de Matzenbacher. O comportamento das lajes foi simulado atrav?s da Teoria Cl?ssica de Laminados sendo desenvolvida a formula??o variacional do problema por meio do Princ?pio dos Trabalhos Virtuais. O tratamento num?rico do problema foi baseado no M?todo dos Elementos Finitos, utilizando um elemento finito retangular com 24 graus de liberdade, incorporando o processo incremental-iterativo de Newton-Raphson com controle de carga e controle de deslocamento. A valida??o dos dois modelos se deu a partir da simula??o de quatro lajes retangulares sob flex?o, cujas an?lises revelaram ser imprescind?vel a danifica??o do m?dulo de elasticidade transversal do concreto ao se usar a mec?nica do dano.
|
6 |
Polyfunkční dům v Berouně / Multifuntional house in BerounKrálová, Andrea January 2016 (has links)
The theme of the diploma’s thesis is a Multifuntional house in Beroun. It is a new building of an independently building. The building is situated in the part of Plzeňské předměstí in the town Beroun, on the Košťálkova street. The rectangular building has three aboveground floors and one underground floor. There are a café with facilities, two shops, a utility room, the main entrance and household facilities on the partunderground floor. On the aboveground floors are situated 14 dwelling unit of different sizes, one of them is designed for persons with reduced mobility and orientation. The supporting vertical system is formed a of a reinforced concrete skeleton and a infill wall from ceramic bricks POROTHERM. Reinforced concrete slabs create the horizontal supporting constructions. A vegetation flat roof forms the roofing above whole building. The peripheral building shell consists of a ventilated facade from fiber-cement boards.
|
7 |
Konstruktiver Makroglasfaserbeton für Bodenplatten und IndustriebödenLöber, Philipp 15 June 2021 (has links)
Im konstruktiven Betonbau haben sich Kurzfasern in Form von Makrofasern zur isotropen Verstärkung vorwiegend statisch unbestimmter Bauteile etabliert. Diese Fasern werden dem Frischbeton konventionell beigemischt und verleihen dem Festbeton bei üblichen Fasergehalten von etwa 1 Vol.-% die Eigenschaft, auch nach erfolgter Rissbildung einen gewissen Grad an Zugspannungen im Riss übertragen zu können. Die dabei übertragbaren Spannungen nehmen in der Regel mit zunehmender Rissweite ab. Das Hauptanwendungsgebiet stellen daher Bodenplatten und Industrieböden dar, deren Systemtragfähigkeit aufgrund ihrer hohen statischen Unbestimmtheit nicht auf die Querschnittstragfähigkeit begrenzt ist. Da die Tragwerk-Baugrund-Interaktion ein komplexer Prozess ist, gestaltet sich eine Aussage zu den Mindestanforderungen an das Entfestigungsverhalten konstruktiver Faserbetone zur Gewährleistung eines duktilen und überkritischen Systemtragverhaltens schwierig. Die Regelungen zur Akzeptanz und zum Einsatz von Faserprodukten für konstruktive Betonbauteile sind zudem insbesondere im deutschsprachigen Raum durch präskriptive Vorgaben wie in der DAfStb-Richtlinie „Stahlfaserbeton“ auf die Anwendung von Stahlfasern begrenzt. International können dagegen durch leistungsbezogene Normen, wie dem fib Model Code 2010, auch andere Fasermaterialien eingesetzt werden, sofern diese mit der Betonmatrix verträglich sind. Kurzfasern aus Glas dürfen im konstruktiven Betonbau momentan nicht auf die Tragfähigkeit von Bauteilen angerechnet werden. Insbesondere längere Makroglasfasern erscheinen aber als geeignet, Spannungen auch bei größeren Rissöffnungen übertragen zu können und insbesondere Betonbodenplatten eine höhere Tragfähigkeit und Duktilität zu verleihen.
In dieser Arbeit wurde die Verwendung von Makroglasfasern mit einer Länge von 36 mm im Kontext ihrer Leistungsfähigkeit auf Material- und Bauteilebene untersucht. Auf Basis von Drei- und Vier-Punkt-Biegezugversuchen wurden Finite-Elemente-Modelle entwickelt und die Leistungsfähigkeit der Faserbetone auf Materialebene durch inverse Analysen bestimmt. Zusätzlich wurde ein eigener Ansatz für dieses Vorgehen entwickelt, mit dem einige der in den Regelwerken verankerten Parameter hinsichtlich ihrer Anwendbarkeit für Makroglasfaserbeton neu kalibriert wurden. Durch experimentelle und numerische Versuche an Decken- und Bodenplatten wurde das Materialverhalten des Makroglasfaserbetons auf Bauteilebene untersucht. Die im Vorfeld ermittelten Materialkennwerte bildeten die Eingangswerte für die Simulation der Bauteilversuche. Abschließend verdeutlichte eine Parameterstudie den Einfluss der Leistungsfähigkeit des Faserbetons und der Bodensteifigkeit auf die Tragfähigkeit von Bodenplatten. Insgesamt soll diese Arbeit einen wissenschaftlichen Beitrag zur Verwendung und statischen Anrechenbarkeit von Makroglasfasern in Konstruktionsbeton und seiner Anwendung in Bodenplatten leisten.
Im Ergebnis ist festzuhalten, dass Makroglasfaserbeton innerhalb der untersuchten Fasergehalte ein dehnungsentfestigendes Materialverhalten aufweist. Die normativ verankerten Beiwerte für die Umrechnung der Nachrissbiegezugfestigkeit in die Nachrisszugfestigkeit sind teilweise zu hoch angesetzt, und die rechnerische Bruchdehnung sollte auf 18 ‰ begrenzt werden. Die Untersuchungen an Bodenplatten zeigen, dass selbst Faserbetone mit geringer Nachrisszugfestigkeit im Bereich größerer Rissweiten, eine deutliche Traglaststeigerungen nach Erstrissbildung im Bauteil erzeugen können. Erst ab einer Rissweite von etwa 0,4 mm bieten duktilere Fasern wie Kunststoff- oder Stahlfasern Vorteile. Bei der Herstellung von Makroglasfaserbeton ist besonderes Augenmerk auf den Mischvorgang zu legen. Mit zunehmender Mischzeit werden die Fasern aufgrund ihres grundsätzlich spröden Materialverhaltens und ihrer Zusammensetzung aus Einzelfilamenten geschädigt. Die Wahl des Betonmischers kann einen Unterschied von einer Leistungsklasse bedingen, weshalb die Leistungsfähigkeit von Makroglasfaserbeton immer an Prüfkörpern aus dem zum Einsatz kommenden Betonmischers erfolgen sollte.
Im Rahmen dieser Arbeit wurden kurzzeitige Belastungen an Bodenplatten unter mittiger Lasteinleitung untersucht. Andere Belastungsszenarien sollten gesondert betrachtet werden. Die Überführung der Ergebnisse der untersuchten Bodenplatten in ein Berechnungsmodell für beliebige Plattengeometrien und Bodeneigenschaften stellt eine sinnvolle Verwertung der Forschungsergebnisse dar.:Vorwort
Symbolverzeichnis
Abkürzungsverzeichnis
Kurzfassung
Abstract
Inhalt
1 Einleitung
1.1 Problem- und Zielstellung
1.2 Thematische Abgrenzung
1.3 Aufbau der Arbeit, Methodik
2 Grundlagen Faserbeton
2.1 Allgemeines
2.1.1 Faserwerkstoffe
2.1.2 Faserformen
2.1.3 Betonmatrix
2.2 Tragverhalten von Faserbeton
2.3 Grundlagen der Bruchmechanik von Faserbeton
2.3.1 Rissbildungsmodelle
2.3.2 Betrachtungen zur charakteristischen Länge
2.4 Ermittlung der Leistungsfähigkeit von Faserbeton
2.4.1 Allgemeine Prüfverfahren
2.4.2 Drei-Punkt-Biegezugversuch nach DIN EN 14651 und fib Model Code 2010
2.4.3 Anwendungsvoraussetzungen von Faserbeton in tragenden Bauteilen nach fib Model Code 2010
2.4.4 Vier-Punkt-Biegezugversuch nach DAfStb-Richtlinie „Stahlfaserbeton“
2.4.5 Anwendungsvoraussetzungen von Faserbeton in tragenden Bauteilen nach DAfStb-Richtlinie „Stahlfaserbeton“
3 Konstruktiver Makroglasfaserbeton
4 Bodenplatten aus Faserbeton
4.1 Allgemeines
4.2 Bodeneigenschaften
4.2.1 Allgemeines
4.2.2 Elastizitätsmodul
4.2.3 Dynamischer Verformungsmodul
4.2.4 Bettungsmodul
4.2.5 Spannungen im Boden
4.2.5.1 Verfahren nach STEINBRENNER
4.2.5.2 Fließkriterium nach DRUCKER-PRAGER
4.3 Interaktion von Baugrund und Gründung
4.3.1 Phasen der Traglastentwicklung von Betonbodenplatten
4.3.2 Bodenmodelle
4.3.3 Ansätze zur Ermittlung der Tragfähigkeit von Bodenplatten
4.4 Eigener Ansatz
5 Beschreibung der experimentellen Untersuchungen
5.1 Übersicht zum Versuchsprogramm
5.2 Entwickelte Makroglasfaserbetonmischungen
5.2.1 Mischungskonzeption
5.2.2 Verwendete Makroglasfasern
5.2.3 Anforderungen an die Frischbetoneigenschaften
5.2.3.1 Verarbeitbarkeit
5.2.3.2 Luftporengehalt
5.3 Versuche an kleinformatigen Prüfkörpern
5.3.1 Übersicht
5.3.2 Druckfestigkeit
5.3.3 Elastizitätsmodul
5.3.4 Drei- und Vier-Punkt-Biegezugversuche an Biegebalken
5.3.5 Dauerhaftigkeit
5.3.5.1 Allgemein
5.3.5.2 Alkalität
5.3.5.3 Frost-Tausalzbeständigkeit
5.3.5.4 Mechanischer Abrieb
5.3.5.5 Wassereindringwiderstand
5.3.6 Untersuchungen zu Faserverteilung und Fasergehalt
5.3.7 Einfluss von Misch- und Transportzeiten auf Faserzustand und Tragverhalten
5.3.7.1 Einfluss der Mischzeit
5.3.7.2 Einfluss des Transportvorgangs
5.4 Bauteilversuche
5.4.1 Übersicht
5.4.2 Vierseitig liniengelagerte Platten
5.4.2.1 Untersuchungsgegenstand und Ziel
5.4.2.2 Versuchsaufbau
5.4.2.3 Versuchsablauf
5.4.3 Flächig gelagerte Platten
5.4.3.1 Untersuchungsgegenstand und Ziel
5.4.3.2 Versuchsaufbau
5.4.3.3 Versuchsablauf
6 Auswertung der experimentellen Untersuchungen
6.1 Frisch- und Festbetoneigenschaften der untersuchten Makroglasfaserbetone
6.1.1 Frischbetoneigenschaften
6.1.2 Grundlegende Festbetoneigenschaften
6.1.3 Residuales Biegetragverhalten
6.1.3.1 Übersicht
6.1.3.2 Drei-Punkt-Biegezugversuche
6.1.3.3 Vier-Punkt-Biegezugversuche
6.1.3.4 Zusammenfassung und Vergleich der Biegeversuche
6.1.3.5 Einfluss des Mischertyps
6.1.4 Dauerhaftigkeit
6.1.4.1 Alkalität
6.1.4.2 Frost-Tauwechselbeständigkeit
6.1.4.3 Mechanischer Abrieb
6.1.4.4 Wassereindringwiderstand
6.1.5 Faserverteilung
6.1.5.1 Übersicht
6.1.5.2 Faserverteilung im Frischbeton
6.1.5.3 Faserverteilung im Festbeton
6.1.6 Einfluss von Misch- und Transportzeiten auf Faserzustand und Tragverhalten
6.1.6.1 Einfluss der Mischzeit
6.1.6.2 Einfluss der Transportzeit
6.2 Vierseitig liniengelagerte Platten
6.2.1 Zielstellung
6.2.2 Tragfähigkeit und Duktilität der untersuchten Serien
6.2.3 Verformungsfiguren und Rissbilder
6.3 Flächig gelagerte Platten
6.3.1 Zielstellung
6.3.2 Eigenschaften des Untergrundes
6.3.3 Tragfähigkeit und Duktilität der untersuchten Bewehrungsvarianten
6.3.4 Verformungsfiguren und Rissbilder
7 Numerische Simulation
7.1 Übersicht
7.2 Numerische Analyse des Entfestigungsverhaltens von Biegebalken
7.2.1 Überblick
7.2.2 Inverse Analyse der Biegebalken mit CONSOFT
7.2.3 Inverse Analyse der Biegebalken mit ATENA
7.2.4 Eigene Inverse Analyse auf Grundlage normativer Ansätze
7.3 Nachrechnung der Untersuchungen an Bodenplatten
7.3.1 Zielstellung
7.3.2 Aufbau des FE-Modells
7.3.2.1 Geometrisches Modell
7.3.2.2 Materialparameter
7.3.2.3 Verwendete Netzparameter
7.3.2.4 Belastungen
7.3.3 Ergebnisse der FE-Simulation
8 Versuchsübergreifende Auswertung
8.1 Entfestigungsverhalten von Makroglasfaserbeton anhand von Biegeversuchen
8.1.1 Überblick
8.1.2 Kalibrierung der ?-Faktoren
8.1.2.1 Drei-Punkt-Biegezugversuch
8.1.2.2 Vier-Punkt-Biegezugversuch
8.1.3 Interpretation der ermittelten Entfestigungskurven
8.2 Einfluss ausgewählter Parameter auf das Systemtragverhalten der untersuchten Bodenplatten
8.2.1 Überblick
8.2.2 Einfluss des Nachbruchverhaltens und der Bodenart
8.2.3 Fazit
9 Zusammenfassung und Ausblick
Literatur
Abbildungsverzeichnis
Tabellenverzeichnis
Anhang A: Ergänzungen zum Stand des Wissens
Dauerhaftigkeit von Glasfaserbeton
Einfluss der Glaszusammensetzung
Einfluss der zementösen Matrix
Bodenmodelle
Halbraumtheorie
Plattentheorie und Bettungsmodulverfahren
Steifezifferverfahren
Steifemodulverfahren
3D-Halbraumverfahren
Berechnungsverfahren für Bodenplatten
Grundlagen der Berechnung der ungerissenen Platte
Grundlagen der Berechnung der gerissenen Platte
Streifenmethode
Bruchlinientheorie
Analytischer Ansatz nach LANZONI ET AL.
Modelle auf Basis numerischer Verfahren
Modell von SHENTU ET AL.
Modell von GOSSLA ET AL.
Modelle auf Basis der nichtlinearen Bruchmechanik
Modell nach BARROS und FIGUEIRAS
Modell nach PLIZZARI ET AL.
Anhang B: Betonzusammensetzung
Betonmischungen
Datenblätter
Flugasche
Betonzusatzmittel
Festigkeiten
Anhang C: Biegezugversuche
Aufbereitung der Versuchsdaten
Prüfprotokolle der Biegezugversuche
Anhang D: Liniengelagerte Platten
Vorbetrachtungen
Zeichnungen
Versuchsbegleitende Messungen
Modifizierung der gemessenen Last-Verformungs-Kurven
Bauteilverformungen über den Plattenquerschnitt
Anhang E: Bodenplatten
Bodenuntersuchungen
Verformungen über die Plattendiagonale
Rissbilder nach Versuchsende
Anhang G: Inverse Analyse
Entfestigungskurven der experimentellen und numerischen Biegezugversuche
Vier-Punkt-Biegezugversuche
Drei-Punkt-Biegezugversuche
Anhang H: FE-Simulation der Bodenplatten
Dimensionierung
Einfluss des Elementtyps
Netzkonfiguration
Eingabewerte für die Materialmodelle
Linear elastische Materialmodelle
Betonmodelle
Bewehrungsstahl
Bodenmodelle
Ergebnisse
Anhang I: Parameterstudie
|
8 |
Möglichkeiten zur Steigerung der Biegetragfähigkeit von Beton- und Stahlbetonbauteilen durch den Einsatz textiler Bewehrungen - Ansatz für ein BemessungsmodellBösche, Anna 14 September 2007 (has links)
In der vorliegenden Arbeit werden die Möglichkeiten zur Traglaststeigerung von Beton- und Stahlbetonbauteilen unter Biegebeanspruchung durch das Verstärken mit textiler Bewehrung experimentell untersucht. Nach einer ausführlichen Recherche alternativer Techniken zur Querschnittsergänzung hinsichtlich der jeweiligen Beschichtungstechnologie, Anwendbarkeit und des Bemessungsmodells wird das Verstärken mit textilbewehrtem Beton als ein vorteilhaftes Verfahren deutlich herausgestellt. Ein weiterer Schwerpunkt ist die Beschreibung des Materialverhaltens der beteiligten Baustoffe mit Hauptaugenmerk auf die sich verändernden Materialeigenschaften der textilen Einzelfaser mit fortschreitender Weiterverarbeitung zum Garn bis hin zu einer textilen Bewehrungsstruktur. Die experimentellen Untersuchungen wurden an Platten und Balken durchgeführt, die aus einem Beton der Festigkeitsklasse C20/25 bestanden. Die Verstärkung erfolgte mittels textiler Bewehrungen aus alkaliresistentem Glas-Textil. Der Betonstahlbewehrungsgrad der untersuchten Bauteile variierte ebenso wie die textile Bewehrungsfläche. Die Versuche werden hinsichtlich der möglichen Traglasterhöhung gegenüber unverstärkten Referenzbauteilen sowie den Verformungen, Rotationen, Dehnungen und der Rissentwicklung ausgewertet. Anschließend wird ein Bemessungsvorschlag für textil verstärkte Bauteile unterbreitet.
|
9 |
Leichte Deckentragwerke aus geschichteten HochleistungsbetonenFrenzel, Michael, Farwig, Kristina, Curbach, Manfred 21 July 2022 (has links)
Stahlbetondeckenplatten sind material- und energieintensive Biegetragwerke, wenn sie, wie derzeit üblich, ebenflächig mit konstanter Querschnittshöhe und aus einer Betonsorte hergestellt werden. Diese Ausführung ist aus statischer und bauökologischer Sicht sehr ineffizient, da der bewehrte Beton nur an wenigen Stellen sowohl in der Haupttragrichtung als auch über die Deckenhöhe voll ausgenutzt wird. Mit einer gleichmäßigen Ausnutzung können Material und Gewicht und damit natürliche Ressourcen gespart werden. / Reinforced concrete floor slabs are materialand energy-intensive flexural load-bearing structures if, as it is currently the case, they are produced flat with a constant cross-sectional height and from one type of concrete. This design is very inefficient from a structural and building ecology point of view, as the reinforced concrete is only fully utilised at a few areas both in the main load-bearing direction and across the slab height. With an uniform utilisation, material and weight and thus natural resources can be saved.
|
10 |
Stahlbetonplatten verstärkt mit Textilbeton unter BrandbelastungEhlig, Daniel, Jesse, Frank, Curbach, Manfred 03 June 2009 (has links) (PDF)
Im Rahmen experimenteller Untersuchungen wurden Stahlbetonplatten hergestellt, mit verschiedenen textilen Bewehrungen verstärkt, mit 125 % Gebrauchslast vorgeschädigt und anschließend unter Gebrauchslast mit einer Brandbelastung nach der Einheitstemperaturkurve (ISO-834, Cellulosic curve) beaufschlagt. Alle Platten hielten der Brandbelastung bei gleichzeitiger Biegebeanspruchung mehr als 60 Minuten stand und zeigten weder Betonabplatzungen noch andere optische Schädigungen auf. Die für dieses überraschend positive Ergebnis verantwortlichen Mechanismen werden diskutiert, sind aber noch nicht vollständig verstanden. Eine Schlüsselrolle spielt dabei vermutlich das gute Rissverhalten von Textilbeton und interne Umlagerungen zwischen Textil und Stahlbewehrung.
|
Page generated in 0.0602 seconds