1 |
Modélisation, approximation numérique et couplage du transfert radiatif avec l'hydrodynamiqueDubois, Joanne 15 December 2009 (has links)
Le présent travail est consacré à l’approximation numérique des solutions du modèle aux moments M1 pour le transfert radiatif. Il s’agit, ici, de développer des solveurs numériques performants et précis capables de prédire avec précision et robustesse des écoulements où le transfert radiatif joue un rôle essentiel. Dans ce sens, plusieurs méthodes numériques ont été envisagées pour la dérivation des schémas numériques de type solveur de Godunov. Une attention particulière a été portée sur les solveurs préservant les ondes de contact stationnaires. En particulier, un schéma de relaxation et un solveur HLLC sont présentés dans ce travail. Pour chacun de ces solveurs, la robustesse de la méthode a été établie (positivité de l’énergie radiative et limitation du flux radiatif). La validation et l’intérêt des méthodes abordées sont exhibés à travers de nombreuses expériences numériques mono et multidimensionelles. / The present work is dedicated to the numerical approximation of the M1 moments model solutions for radiative transfer. The objective is to develop efficient and accurate numerical solvers, able to provide with precise and robust computations of flows where radiative transfer effects are important. With this aim, several numerical methods have been considered in order to derive numerical schemes based on Godunov type solvers. A particular attention has been paid to solvers preserving the stationary contact waves. Namely, a relaxation scheme and a HLLC solver are presented in this thesis. The robustness of each of these solvers has been established (radiative energy positivity and radiative flux limitation). Several numerical experiments in one and two space dimensions validate the developed methods and outline their interest.
|
2 |
Multigrid Methods for Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Bellman-Isaacs EquationsHan, Dong January 2011 (has links)
We propose multigrid methods for solving Hamilton-Jacobi-Bellman (HJB) and Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations. The methods are based on the full approximation scheme. We propose a damped-relaxation method as smoother for multigrid. In contrast with policy iteration, the relaxation scheme is convergent for both HJB and HJBI equations. We show by local Fourier analysis that the damped-relaxation smoother effectively reduces high frequency error. For problems where the control has jumps, restriction and interpolation methods are devised to capture the jump on the coarse grid as well as during coarse grid correction. We will demonstrate the effectiveness of the proposed multigrid methods for solving HJB and HJBI equations arising from option pricing as well as problems where policy iteration does not converge or converges slowly.
|
3 |
Multigrid Methods for Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Bellman-Isaacs EquationsHan, Dong January 2011 (has links)
We propose multigrid methods for solving Hamilton-Jacobi-Bellman (HJB) and Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations. The methods are based on the full approximation scheme. We propose a damped-relaxation method as smoother for multigrid. In contrast with policy iteration, the relaxation scheme is convergent for both HJB and HJBI equations. We show by local Fourier analysis that the damped-relaxation smoother effectively reduces high frequency error. For problems where the control has jumps, restriction and interpolation methods are devised to capture the jump on the coarse grid as well as during coarse grid correction. We will demonstrate the effectiveness of the proposed multigrid methods for solving HJB and HJBI equations arising from option pricing as well as problems where policy iteration does not converge or converges slowly.
|
4 |
Modélisation MHD et simulation numérique par des méthodes volumes finis. Application aux plasmas de fusion / MHD modeling and numerical simulation with finite volume-type methods. Application to fusion plasmaEstibals, Élise 02 May 2017 (has links)
Ce travail traite de la modélisation des plasmas de fusion qui est ici abordée à l'aide d'un modèle Euler bi-températures et du modèle de la magnétohydrodynamique (MHD) idéale et résistive. Ces modèles sont tout d'abord établis à partir des équations de la MHD bi-fluide et nous montrons qu'ils correspondent à des régimes asymptotiques différents pour des plasmas faiblement ou fortement magnétisés. Nous décrivons ensuite les méthodes de volumes finis pour des maillages structurés et non-structurés qui ont été utilisées pour approcher les solutions de ces modèles. Pour les trois modèles mathématiques étudiés dans cette thèse, les méthodes numériques reposent sur des schémas de relaxation. Afin d'appliquer ces méthodes aux problèmes de fusion par confinement magnétique, nous décrivons comment modifier les méthodes de volumes finis pour les appliquer à des problèmes formulés en coordonnées cylindriques tout en gardant une formulation conservative forte des équations. Enfin nous étudions une stratégie pour maintenir la contrainte de divergence nulle du champ magnétique qui apparait dans les modèles MHD. Une série de cas tests numériques pour les trois modèles est présentée pour différentes géométries afin de valider les méthodes numériques proposées. / This work deals with the modeling of fusion plasma which is discussed by using a bi-temperature Euler model and the ideal and resistive magnetohydrodynamic (MHD) ones. First, these models are established from the bi-fluid MHD equations and we show that they correspond to different asymptotic regimes for lowly or highly magnetized plasma. Next, we describe the finite volume methods for structured and non-structured meshes which have been used to approximate the solution of these models. For the three mathematical models studied in this thesis, the numerical methods are based on relaxation schemes. In order to apply those methods to magnetic confinement fusion problems, we explain how to modify the finite volume methods to apply it to problem given in cylindrical coordinates while keeping a strong conservative formulation. Finally, a strategy dealing with the divergence-free constraint of the magnetic field is studied. A set of numerical tests for the three models is presented for different geometries to validate the proposed numerical methods.
|
5 |
Kinetic Theory Based Numerical Schemes for Incompressible FlowsRuhi, Ankit January 2016 (has links) (PDF)
Turbulence is an open and challenging problem for mathematical approaches, physical modeling and numerical simulations. Numerical solutions contribute significantly to the understand of the nature and effects of turbulence. The focus of this thesis is the development of appropriate numerical methods for the computer simulation of turbulent flows. Many of the existing approaches to turbulence utilize analogies from kinetic theory. Degond & Lemou (J. Math. Fluid Mech., 4, 257-284, 2002) derived a k-✏ type turbulence model completely from kinetic theoretic framework. In the first part of this thesis, a numerical method is developed for the computer simulation based on this model. The Boltzmann equation used in the model has an isotropic, relaxation collision operator. The relaxation time in the collision operator depends on the microscopic turbulent energy, making it difficult to construct an efficient numerical scheme. In order to achieve the desired numerical efficiency, an appropriate change of frame is applied. This introduces a stiff relaxation source term in the equations and the concept of asymptotic preserving schemes is then applied to tackle the stiffness. Some simple numerical tests are introduced to validate the new scheme. In the second part of this thesis, alternative approaches are sought for more efficient numerical techniques. The Lattice Boltzmann Relaxation Scheme (LBRS) is a novel method developed recently by Rohan Deshmukh and S.V. Raghuram Rao for simulating compressible flows. Two different approaches for the construction of implicit sub grid scale -like models as Implicit Large Eddy Simulation (ILES) methods, based on LBRS, are proposed and are tested for Burgers turbulence, or Burgulence. The test cases are solved over a largely varying Reynolds number, demonstrating the efficiency of this new ILES-LBRS approach. In the third part of the thesis, as an approach towards the extension of ILES-LBRS to incompressible flows, an artificial compressibility
model of LBRS is proposed. The modified framework, LBRS-ACM is then tested for standard viscous incompressible flow test cases.
|
Page generated in 0.1261 seconds