• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • Tagged with
  • 14
  • 14
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Quantificação da deposição de ferro no cérebro usando ressonância magnética: um estudo em pacientes com doença de Parkinson / Quantification of iron deposition in the brain using magnetic resonance: a study in patients with Parkinsons disease.

Jeam Haroldo Oliveira Barbosa 29 July 2013 (has links)
A capacidade do ferro, presente no corpo humano, em aceitar e doar elétrons o torna essencial para homeostase celular e várias reações biológicas. Contudo, o excesso deste metal no cérebro pode gerar efeitos deletérios através da produção de espécies reativas de oxigênio que causam o estresse oxidativo. Este estresse aparece como possível causa de doenças neurodegenerativas, caracterizadas por um aumento significativo da concentração de ferro em certas regiões do cérebro. Detectar e quantificar a deposição de ferro in vivo no cérebro torna-se de extrema relevância para entender diversas doenças neurodegenerativas. Neste estudo avaliamos a sensibilidade e a especificidade das principais técnicas de Ressonância Magnética in vivo para estimar o conteúdo de ferro depositado no cérebro. Foram estudados um grupo de 16 sujeitos saudáveis e outro de 14 pacientes com doença de Parkinson. Mapas de relaxometria (R2 e R2*) e susceptibilidade (QSM) foram estimados a partir de imagens adquiridas numa maquina de RM de 3.0T. Embora todos os mapas tenham apresentado correlação linear (r2 = 0; 7) com o acumulo de ferro reportado in vitro nas regiões do núcleo da base, apenas os mapas R2 e QSM apresentaram estatisticamente aumento significativo (p<0,05) para certas regiões do cérebro parkinsoniano (substância negra, núcleo rubro e globo pálido). O mapa QSM apresentou maior sensibilidade e especificidade para diferenciar pacientes com a doença quando comparados a sujeitos saudáveis por meio da análise da curva ROC. Concluímos que os mapas de relaxometria e susceptibilidade magnética podem estimar de forma indireta o conteúdo de ferro no cérebro, apesar de apresentarem dependências diferentes com a concentração deste metal. Observamos também que os valores de sususceptibilidade magnética obtidos com imagens de baixa resolução (1,0x1,0x2,0mm) não apresentaram mudanças significativas em relação aos obtidos com imagens de alta resolução (0,5x0,5x2,0mm). Logo, sugerimos a aquisição de imagens com baixa resolução para o processamento do mapa QSM. A analise de múltiplos valores de tempo de relaxação T2 determinou apenas um valor para cada região do núcleo da base para ambos os grupos, este resultado foi aparentemente afetado pela relação sinal ruído. / The capacity of the iron present in the human body to accept and donate electrons makes it essential for cellular homeostasis and various biological reactions. However, an excess of the metal in the brain can produce deleterious effects through the production of reactive oxygen species that cause oxidative stress. This stress can be the possible cause of neurodegenerative diseases which present a significant increase in iron concentration in certain brain regions. To detect and quantify iron deposition in the brain in vivo has high potential for understanding neurodegenerative diseases. In this study we evaluated the sensitivity and specificity of the main Magnetic Resonance technique in vivo to estimate the content of iron deposited in the brain. Were studied a group of 16 controls and 14 patient with Parkinson disease. Relaxometry map (R2 and R2*) and magnetic susceptibility map QSM were estimated by images obtained of scanner of Magnetic Resonance of 3T. Although all maps have presented linear correlation (r2=0.7) with the accumulation of iron reported in vitro regions of basal ganglia, only the R2 and QSM maps showed significant increase (p < 0.05) for certain regions of the parkinsonian brain (substantia nigra, red nucleus, and globus pallidus). The QSM map showed higher sensitivity and especificity for differentiate patients with the disease when compared with controls by the analysis of curve ROC. We conclude that magnetic susceptibility and relaxometry maps may estimate indirect the content of brain iron, although having different dependencies with the concentration of this metal. We also observed that the values of magnetic sususceptibility obtained with low resolution images (1,0 x1, 0x2, 0mm) showed no significant change compared to those obtained with high-resolution images (0,5 x0, 5x2,0mm). So, we suggest the acquisition of images with low resolution to process QSM map. The analysis of multiple relaxation time T2 determined just one value for basal ganglia in both groups, these results were apparently affected by rate noise signal.
12

Study of advanced ion conducting polymers by relaxation, diffusion and spectroscopy NMR methods / Estudo de polímeros condutores iônicos avançados com métodos de relaxação, difusão e espectroscopia por RMN

Daniel Jardón Álvarez 11 August 2016 (has links)
Advances on secondary lithium ion batteries imply the use of solid polymer electrolytes, which represent a promising solution to improve safety issues in high energy density batteries. Through dissolution of lithium salts into a polymeric host, such as poly(ethylene oxide) (PEO), ion conducting polymers are obtained. The Li+ ions will be localized in the proximity of the oxygen atoms in the PEO chains and thus, their motion strongly correlated with the segmental reorientation of the polymer. Nuclear magnetic resonance (NMR) spectroscopy, translational diffusion coefficients and transverse relaxation times (T2) contribute to the understanding of the involved structures and the ongoing dynamical processes in ionic conductivity. Nuclei with different motional freedom can present different T2 times. T2xT2 exchange experiments enable studying exchange processes between nuclei from different motional regimes. In this work, three different ion conducting polymers were studied. First, PEG was doped with different amounts of LiClO4. 7Li NMR relaxometry measurements were done to study dynamical behavior of the lithium ions in the amorphous phase. All samples presented two lithium types with clearly differentiated T2 times, indicating the presence of two regions with different dynamics. The mobility and consequently the T2 times, increases with temperature. It was observed, that the doping ratio strongly influences the dynamics of the lithium ions, as the amount of crystalline PEG is reduced while increasing the polarity of the sample. A local maximum of the mobility was observed for y = 8. With the T2xT2 exchange experiments exchange rates between both lithium sites were quantified. Second, the triblock copolymer PS-PEO-PS doped with LiTFSI was studied with high resolution solid state NMR techniques as well as with 7Li relaxometry measurements. T1&#961; and spin diffusion measurements gave insight on the influence of the doping and the PS/PEO ratio on the mobility of the different segments and on interdomain distances of the lamellar phases. Third, multiple quantum diffusion measurements were applied on poly(ethylene glycol) distearate (PEGD) doped with LiClO4. Therefore, triple quantum states of the 3/2 nucleus 7Li were excited. After optimizing the experimental procedure, it was possible to obtain reliable diffusion coefficients using triple quantum states. / O avanço da tecnologia em baterias secundárias de íons lítio envolve o uso de polímeros condutores iônicos como eletrólitos, os quais representam uma solução promissora para obter baterias de maior densidade de energia e segurança. Polímeros condutores são formados através da dissolução de sais de lítio em uma matriz polimérica, como o poli(óxido de etileno) (PEO). Os íons de lítio estão localizados próximos aos oxigênios do PEO, de tal forma que seu movimento está correlacionado com a reorientação das cadeias poliméricas. Espectroscopia por Ressonância magnética nuclear (RMN), junto com medidas de difusão translacional e tempos de relaxação transversal (T2) contribuem para elucidar as estruturas e os processos dinâmicos envolvidos na condutividade iônica. Núcleos com diferente liberdade de movimentação podem ter tempos de T2 diferentes. Experimentos de T2xT2 permitem correlacionar sítios de diferentes propriedades dinâmicas. Neste trabalho, três diferentes polímeros condutores iônicos foram estudados. Primeiro, PEG foi dopado com LiClO4. As propriedades dinâmicas dos íons lítio na fase amorfa foram estudadas com medidas de relaxometria por RMN do núcleo 7Li. Todas as razões de dopagem apresentaram dois T2 diferentes, indicando dos tipos de lítio com dinâmica diferente. A mobilidade, e consequentemente os tempos T2 aumentam com aumento da temperatura. Foi identificado que a dopagem fortemente influencia a dinâmica dos íons lítio, devido à redução da fase cristalina PEG e o aumento da polaridade na amostra. Um máximo local da mobilidade foi observado para y = 8. Com o experimento T2xT2 foram quantificadas as rações de troca entre os dois tipos de lítio. Segundo, o copolímero tribloco PS-PEO-PS dopado com LiTFSI foi analisado através de técnicas de RMN de estado sólido de alta resolução assim como através de medidas de relaxação de 7Li. Medidas de T1&#961; e difusão de spin mostraram a influência da dopagem e da razão PS/PEO na mobilidade dos diferentes segmentos e nas distâncias interdomínio das fases lamelares. Terceiro, medidas de difusão através de estados de múltiplos quanta foram feitas em diesterato de polietileno glicol (PEGD) dopado com LiClO4. Estados de triplo quantum foram criados no núcleo 7Li, spin 3/2. Após garantir a eficiência das ferramentas desenvolvidas, foi possível obter coeficientes de difusão confiáveis.
13

Estudo das relações entre populações celulares, expressão de aquaporina-4 e sulfato de condroitina com o tempo de relaxamento e a taxa de transferência de magnetização no hipocampo de pacientes com epilepsia do lobo temporal farmacorresistente / Study of the associations between cellular populations, aquaporin 4 and chondroitin sulfate with T2 relaxation and magnetization transfer in the hippocampus of patients with drug-resistant temporal lobe epilepsy

Santos, José Eduardo Peixoto 30 September 2014 (has links)
Racional: A epilepsia do lobo temporal está comumente associada à farmacorresistência e tem a esclerose hipocampal como achado neuropatológico em mais da metade dos casos. Histologicamente, a esclerose hipocampal está associada à perda neuronal diferencial e gliose, além de alterações nos níveis de moléculas associadas à homeostase da água tecidual, como a aquaporina 4 e a molécula de matriz sulfato de condroitina. Em imagens de ressonância nuclear magnética, a esclerose é caracterizada por redução de volume em sequências ponderadas em T1, aumento de sinal e tempo de relaxamento em sequências ponderadas em T2 e redução na transferência de magnetização. Justificativa e Objetivos: Uma vez que tanto o sinal T2 quando a transferência de magnetização são dependentes da água tecidual, nosso objetivo é avaliar, na formação hipocampal de pacientes com epilepsia do lobo temporal, as correlações entre populações celulares e moléculas ligadas à homeostase da água e as imagens ponderadas em T2 e transferência de magnetização. Visamos ainda definir, na formação hipocampal de indivíduos sem alterações neuropatológicas, o volume de cada um dos subcampos hipocampais. Metodologia: Pacientes com epilepsia do lobo temporal farmacorresistente (ELT, n = 43), bem como voluntários sadios (controle radiológico, CH, n = 20), foram submetidos a exames de ressonância magnética em máquina de 3T para mensuração da volumetria hipocampal, tempo de relaxamento T2 e transferência de magnetização hipocampal (exames in vivo). Após o tratamento cirúrgico para o controle das crises, os hipocampos dos pacientes com ELT foram fixados por 8 dias e submetidos aos exames ex vivo em máquina de 3T para cálculo do tempo de relaxamento T2 de cada subcampo hipocampal. Hipocampos controle (Controle historadiológico, CHR, n = 14), foram obtidos de autópsias de pacientes sem histórico ante-mortem de doença neurológica ou presença de patologia no exame do encéfalo pos mortem. Ambos os grupos controle foram pareados para idade em relação ao grupo ELT. Alguns dos casos CHR (n = 6) foram também submetidos à imagem 3D T2 em máquina de 4,7T para cálculo de volumetria dos subcampos hipocampais. Após emblocamento em parafina, secções coronais hipocampais dos casos CHR e ELT foram submetidas às técnicas de histoquímica básica Hematoxilina e Eosina e Luxol Fast Blue, e às imuno-histoquímicas para avaliação das populações neuronais (NeuN), astrócitos reativos (GFAP), micróglias ativadas (HLA-DR) e para a expressão de aquaporina 4 (AQP4) e níveis de sulfato de condroitina (CS-56). Para a comparação entre os grupos, foram realizados testes t para dados paramétricos e Mann-Whitney para dados não-paramétricos. Testes de correlação foram empregados para análise da associação entre as avaliações histológicas e os exames de ressonância magnética. Resultados: Pacientes com ELT apresentaram menor volume hipocampal, maior tempo de relaxamento T2 e menor transferência de magnetização no exame in vivo, quando comparados com o CR. O exame ex vivo para a volumetria dos subcampos hipocampais em casos do grupo CHR indicou que a fascia dentata, a região CA1 e o subículo correspondem à 85 % do volume hipocampal total. Quanto ao tempo de relaxamento T2 ex vivo, foi observado aumento em todos os subcampos hipocampais do grupo ELT, à exceção da fascia dentata, quando comparados ao CHR. A avaliação da densidade neuronal indicou redução significativa em todos os subcampos dos casos ELT, à exceção do subículo, quando comparados ao CHR. Em relação aos valores do grupo CHR, foi observada astrogliose em quase todos subcampos da formação hipocampal (a exceção da zona subgranular e do hilo) e microgliose em todos os subcampos (exceto pelo subículo) dos casos com ELT. Pacientes com ELT apresentaram redução na expressão de aquaporina 4 perivascular em todos os subcampos do hipocampo, comparados ao CHR. Aumento nos níveis de sulfato de condroitina foi observado em todos os subcampos da formação hipocampal, à exceção da camada granular, nos pacientes com ELT. O volume hipocampal e a transferência de magnetização in vivo dos pacientes com ELT correlacionaram-se tanto com a população neuronal como com os níveis de sulfato de condroitina, enquanto que o tempo de relaxamento in vivo correlacionou-se com a população astroglial e os níveis de sulfato de condroitina. O exame ex vivo corroborou a correlação entre a população glial e o tempo de relaxamento observado nos pacientes com ELT. A diferença entre o tempo de relaxamento in vivo e ex vivo correlacionou-se tanto com a difusibilidade da água no tecido como com os níveis de sulfato de condroitina. Conclusões: Nossos dados indicam correlação entre a patologia hipocampal e as imagens de ressonância nuclear magnética, sendo que a maior qualidade das imagens ex vivo permitiu uma avaliação mais direta entre o sinal de ressonância e a patologia, indicando importância da população celular e matriz extracelular para o volume hipocampal e a transferência de magnetização, e da astrogliose para o tempo de relaxamento T2. Finalmente, nossos dados mostraram que CA1, subículo e fascia dentata tem grande participação no volume hipocampal, sendo que alterações nestas regiões tem um papel mais relevante nas alterações observadas na ressonância magnética, como indicado por nossas correlações. / Rationale: Drug resistant temporal lobe epilepsy is often associated with hippocampal sclerosis. Histological evaluation reveals differential neuronal loss, gliosis and changes in molecules associated with water homeostasis, such as aquaporin 4 and chondroitin sulfate. Magnetic resonance imaging in these cases often reveals hippocampal atrophy, increased T2 signal and T2 relaxation and reduced magnetization transfer ratio in the hippocampus. Aims: Once both T2 signal and magnetization transfer are affected by tissue water, our goal was to evaluate, in the hippocampus of drug-resistant temporal lobe epilepsy patients who underwent surgery for seizure control, the associations between cellular populations, aquaporin 4 and chondroitin sulfate with T2 relaxation time and magnetization transfer. Additionally, we intended to measure the individual volume of each hippocampal subfield in hippocampus from patients without neurological disease. Methods: Patients with drug-resistant temporal lobe epilepsy (TLE, n = 43) and age-matched health volunteers (radiological control, RC, n = 20) were submitted to magnetic resonance in a 3T machine for hippocampal volumetry measure, T2 relaxation and magnetization transfer (in vivo examination). After surgical treatment for seizure control, hippocampi from the TLE patients were fixed in formalin for 8 days and then submitted to ex vivo imaging in 3T for relaxation time of every hippocampal subfield. Control hippocampi were obtained from autopsies of age-matched patients without ante mortem history of neurological disease or post mortem neurological pathology, and underwent the same ex vivo imaging (histo-radiological control, HRC, n = 14). Six cases from the HRC underwent 3D T2 imaging in a 4.7T machine, in order to measure the volumes of the hippocampal subfields. Paraffin embedded hippocampal sections from TLE and HRC were submitted to Hematoxilin-Eosin and Luxol Fast Blue histochemistries, and to immunohistochemistries for the evaluation of neurons (NeuN), reactive astrocytes (GFAP), activated microglia (HLA-DR), for aquaporin 4 (AQP4) and for chondroitin sulfate (CS-56). Students t-test or Mann-Whitneys test were performed for comparison between groups, and correlation tests were performed for the comparison between histological and magnetic resonance measures. Results: Patients with TLE presented reduced hippocampal volume, increased T2 relaxation time and reduced magnetization transfer, when compared to RC. The ex vivo volumetry of the hippocampal subfields revealed that fascia dentata, CA1 and subiculum together correspond to 85 % of the total hippocampal volume. Ex vivo relaxation time, as the in vivo, were increased in the subfields of TLE patients, when compared to HRC. Compared to HRC, TLE patients presented neuron loss and microgliosis in all hippocampal subfields but the subiculum, and astrogliosis in all hippocampal subfields but the subgranule zone and the hilus. Reduced perivascular aquaporin 4 was observed in all hippocampal subfields of TLE patients, and increased chondroitin sulfate was observed in all hippocampal subfields, with the exception of granule cell layer, of TLE patients, when compared to HRC. In TLE, both in vivo hippocampal volume and magnetization transfer correlated with the levels of chondroitin sulfate and the neuronal population, whereas the in vivo relaxation time correlated with the astroglial population and the levels of chondroitin sulfate. Ex vivo relaxation time also correlated with the astroglial population in TLE patients. The difference between in vivo and ex vivo relaxation values correlated with water difusibility and the levels of chondroitin sulfate. Conclusion: Our data indicate the importance of neuron population and extracellular matrix to both hippocampal volume and magnetization transfer, and of the reactive astrocytes for T2 relaxation. Ex vivo relaxation time allowed a more detailed evaluation, and indicated more robust correlations between reactive astrocytes and T2 relaxation. Finally, Our data indicated that CA1, the subiculum and fascia dentata are the major contributors to hippocampal volume, so changes in these subfields most likely will affect magnetic resonance imaging.
14

Estudo das relações entre populações celulares, expressão de aquaporina-4 e sulfato de condroitina com o tempo de relaxamento e a taxa de transferência de magnetização no hipocampo de pacientes com epilepsia do lobo temporal farmacorresistente / Study of the associations between cellular populations, aquaporin 4 and chondroitin sulfate with T2 relaxation and magnetization transfer in the hippocampus of patients with drug-resistant temporal lobe epilepsy

José Eduardo Peixoto Santos 30 September 2014 (has links)
Racional: A epilepsia do lobo temporal está comumente associada à farmacorresistência e tem a esclerose hipocampal como achado neuropatológico em mais da metade dos casos. Histologicamente, a esclerose hipocampal está associada à perda neuronal diferencial e gliose, além de alterações nos níveis de moléculas associadas à homeostase da água tecidual, como a aquaporina 4 e a molécula de matriz sulfato de condroitina. Em imagens de ressonância nuclear magnética, a esclerose é caracterizada por redução de volume em sequências ponderadas em T1, aumento de sinal e tempo de relaxamento em sequências ponderadas em T2 e redução na transferência de magnetização. Justificativa e Objetivos: Uma vez que tanto o sinal T2 quando a transferência de magnetização são dependentes da água tecidual, nosso objetivo é avaliar, na formação hipocampal de pacientes com epilepsia do lobo temporal, as correlações entre populações celulares e moléculas ligadas à homeostase da água e as imagens ponderadas em T2 e transferência de magnetização. Visamos ainda definir, na formação hipocampal de indivíduos sem alterações neuropatológicas, o volume de cada um dos subcampos hipocampais. Metodologia: Pacientes com epilepsia do lobo temporal farmacorresistente (ELT, n = 43), bem como voluntários sadios (controle radiológico, CH, n = 20), foram submetidos a exames de ressonância magnética em máquina de 3T para mensuração da volumetria hipocampal, tempo de relaxamento T2 e transferência de magnetização hipocampal (exames in vivo). Após o tratamento cirúrgico para o controle das crises, os hipocampos dos pacientes com ELT foram fixados por 8 dias e submetidos aos exames ex vivo em máquina de 3T para cálculo do tempo de relaxamento T2 de cada subcampo hipocampal. Hipocampos controle (Controle historadiológico, CHR, n = 14), foram obtidos de autópsias de pacientes sem histórico ante-mortem de doença neurológica ou presença de patologia no exame do encéfalo pos mortem. Ambos os grupos controle foram pareados para idade em relação ao grupo ELT. Alguns dos casos CHR (n = 6) foram também submetidos à imagem 3D T2 em máquina de 4,7T para cálculo de volumetria dos subcampos hipocampais. Após emblocamento em parafina, secções coronais hipocampais dos casos CHR e ELT foram submetidas às técnicas de histoquímica básica Hematoxilina e Eosina e Luxol Fast Blue, e às imuno-histoquímicas para avaliação das populações neuronais (NeuN), astrócitos reativos (GFAP), micróglias ativadas (HLA-DR) e para a expressão de aquaporina 4 (AQP4) e níveis de sulfato de condroitina (CS-56). Para a comparação entre os grupos, foram realizados testes t para dados paramétricos e Mann-Whitney para dados não-paramétricos. Testes de correlação foram empregados para análise da associação entre as avaliações histológicas e os exames de ressonância magnética. Resultados: Pacientes com ELT apresentaram menor volume hipocampal, maior tempo de relaxamento T2 e menor transferência de magnetização no exame in vivo, quando comparados com o CR. O exame ex vivo para a volumetria dos subcampos hipocampais em casos do grupo CHR indicou que a fascia dentata, a região CA1 e o subículo correspondem à 85 % do volume hipocampal total. Quanto ao tempo de relaxamento T2 ex vivo, foi observado aumento em todos os subcampos hipocampais do grupo ELT, à exceção da fascia dentata, quando comparados ao CHR. A avaliação da densidade neuronal indicou redução significativa em todos os subcampos dos casos ELT, à exceção do subículo, quando comparados ao CHR. Em relação aos valores do grupo CHR, foi observada astrogliose em quase todos subcampos da formação hipocampal (a exceção da zona subgranular e do hilo) e microgliose em todos os subcampos (exceto pelo subículo) dos casos com ELT. Pacientes com ELT apresentaram redução na expressão de aquaporina 4 perivascular em todos os subcampos do hipocampo, comparados ao CHR. Aumento nos níveis de sulfato de condroitina foi observado em todos os subcampos da formação hipocampal, à exceção da camada granular, nos pacientes com ELT. O volume hipocampal e a transferência de magnetização in vivo dos pacientes com ELT correlacionaram-se tanto com a população neuronal como com os níveis de sulfato de condroitina, enquanto que o tempo de relaxamento in vivo correlacionou-se com a população astroglial e os níveis de sulfato de condroitina. O exame ex vivo corroborou a correlação entre a população glial e o tempo de relaxamento observado nos pacientes com ELT. A diferença entre o tempo de relaxamento in vivo e ex vivo correlacionou-se tanto com a difusibilidade da água no tecido como com os níveis de sulfato de condroitina. Conclusões: Nossos dados indicam correlação entre a patologia hipocampal e as imagens de ressonância nuclear magnética, sendo que a maior qualidade das imagens ex vivo permitiu uma avaliação mais direta entre o sinal de ressonância e a patologia, indicando importância da população celular e matriz extracelular para o volume hipocampal e a transferência de magnetização, e da astrogliose para o tempo de relaxamento T2. Finalmente, nossos dados mostraram que CA1, subículo e fascia dentata tem grande participação no volume hipocampal, sendo que alterações nestas regiões tem um papel mais relevante nas alterações observadas na ressonância magnética, como indicado por nossas correlações. / Rationale: Drug resistant temporal lobe epilepsy is often associated with hippocampal sclerosis. Histological evaluation reveals differential neuronal loss, gliosis and changes in molecules associated with water homeostasis, such as aquaporin 4 and chondroitin sulfate. Magnetic resonance imaging in these cases often reveals hippocampal atrophy, increased T2 signal and T2 relaxation and reduced magnetization transfer ratio in the hippocampus. Aims: Once both T2 signal and magnetization transfer are affected by tissue water, our goal was to evaluate, in the hippocampus of drug-resistant temporal lobe epilepsy patients who underwent surgery for seizure control, the associations between cellular populations, aquaporin 4 and chondroitin sulfate with T2 relaxation time and magnetization transfer. Additionally, we intended to measure the individual volume of each hippocampal subfield in hippocampus from patients without neurological disease. Methods: Patients with drug-resistant temporal lobe epilepsy (TLE, n = 43) and age-matched health volunteers (radiological control, RC, n = 20) were submitted to magnetic resonance in a 3T machine for hippocampal volumetry measure, T2 relaxation and magnetization transfer (in vivo examination). After surgical treatment for seizure control, hippocampi from the TLE patients were fixed in formalin for 8 days and then submitted to ex vivo imaging in 3T for relaxation time of every hippocampal subfield. Control hippocampi were obtained from autopsies of age-matched patients without ante mortem history of neurological disease or post mortem neurological pathology, and underwent the same ex vivo imaging (histo-radiological control, HRC, n = 14). Six cases from the HRC underwent 3D T2 imaging in a 4.7T machine, in order to measure the volumes of the hippocampal subfields. Paraffin embedded hippocampal sections from TLE and HRC were submitted to Hematoxilin-Eosin and Luxol Fast Blue histochemistries, and to immunohistochemistries for the evaluation of neurons (NeuN), reactive astrocytes (GFAP), activated microglia (HLA-DR), for aquaporin 4 (AQP4) and for chondroitin sulfate (CS-56). Students t-test or Mann-Whitneys test were performed for comparison between groups, and correlation tests were performed for the comparison between histological and magnetic resonance measures. Results: Patients with TLE presented reduced hippocampal volume, increased T2 relaxation time and reduced magnetization transfer, when compared to RC. The ex vivo volumetry of the hippocampal subfields revealed that fascia dentata, CA1 and subiculum together correspond to 85 % of the total hippocampal volume. Ex vivo relaxation time, as the in vivo, were increased in the subfields of TLE patients, when compared to HRC. Compared to HRC, TLE patients presented neuron loss and microgliosis in all hippocampal subfields but the subiculum, and astrogliosis in all hippocampal subfields but the subgranule zone and the hilus. Reduced perivascular aquaporin 4 was observed in all hippocampal subfields of TLE patients, and increased chondroitin sulfate was observed in all hippocampal subfields, with the exception of granule cell layer, of TLE patients, when compared to HRC. In TLE, both in vivo hippocampal volume and magnetization transfer correlated with the levels of chondroitin sulfate and the neuronal population, whereas the in vivo relaxation time correlated with the astroglial population and the levels of chondroitin sulfate. Ex vivo relaxation time also correlated with the astroglial population in TLE patients. The difference between in vivo and ex vivo relaxation values correlated with water difusibility and the levels of chondroitin sulfate. Conclusion: Our data indicate the importance of neuron population and extracellular matrix to both hippocampal volume and magnetization transfer, and of the reactive astrocytes for T2 relaxation. Ex vivo relaxation time allowed a more detailed evaluation, and indicated more robust correlations between reactive astrocytes and T2 relaxation. Finally, Our data indicated that CA1, the subiculum and fascia dentata are the major contributors to hippocampal volume, so changes in these subfields most likely will affect magnetic resonance imaging.

Page generated in 0.0615 seconds