1 |
Metody analýzy spolehlivostních dat z provozu a zkoušek letadel / Methods of Reliability Analyses of Operation and Testing Data of AirplanesNovák, Josef January 2011 (has links)
The doctoral thesis deals with reliability (dependability) analyses of operation and testing data of the Airplanes. Requirements of airworthiness regulations on aircraft hydraulic systems (with a focus on US FAR-23 and European CS-23 regulations) are taken into account. Mentioned regulations include requirements for the structural design, design of systems, etc. They cover wide range of airplanes from small sport airplanes to 19-seats transport aircraft. Also options for predictive reliability analyses (resources) and reliability tests are discussed in the doctoral thesis. Practical application is done on small transport airplane (currently in the development). The failure report is designed. Expected major contribution of the work is selection and practical application of the most suitable procedures for safety assessment on the field of aircraft hydraulic systems, with a focus on the small transport aircraft. Also the comparison to different data source is shown.
|
2 |
DATA-DRIVEN APPROACHES FOR UNCERTAINTY QUANTIFICATION WITH PHYSICS MODELSHuiru Li (18423333) 25 April 2024 (has links)
<p dir="ltr">This research aims to address these critical challenges in uncertainty quantification. The objective is to employ data-driven approaches for UQ with physics models.</p>
|
3 |
Non-deterministic analysis of slope stability based on numerical simulationShen, Hong 02 October 2012 (has links) (PDF)
In geotechnical engineering, the uncertainties such as the variability and uncertainty inherent in the geotechnical properties have caught more and more attentions from researchers and engineers. They have found that a single “Factor of Safety” calculated by traditional deterministic analyses methods can not represent the slope stability exactly. Recently in order to provide a more rational mathematical framework to incorporate different types of uncertainties in the slope stability estimation, reliability analyses and non-deterministic methods, which include probabilistic and non probabilistic (imprecise methods) methods, have been applied widely. In short, the slope non-deterministic analysis is to combine the probabilistic analysis or non probabilistic analysis with the deterministic slope stability analysis. It cannot be regarded as a completely new slope stability analysis method, but just an extension of the slope deterministic analysis. The slope failure probability calculated by slope non-deterministic analysis is a kind of complement of safety factor. Therefore, the accuracy of non deterministic analysis is not only depended on a suitable probabilistic or non probabilistic analysis method selected, but also on a more rigorous deterministic analysis method or geological model adopted.
In this thesis, reliability concepts have been reviewed first, and some typical non-deterministic methods, including Monte Carlo Simulation (MCS), First Order Reliability Method (FORM), Point Estimate Method (PEM) and Random Set Theory (RSM), have been described and successfully applied to the slope stability analysis based on a numerical simulation method-Strength Reduction Method (SRM). All of the processes have been performed in a commercial finite difference code FLAC and a distinct element code UDEC.
First of all, as the fundamental of slope reliability analysis, the deterministic numerical simulation method has been improved. This method has a higher accuracy than the conventional limit equilibrium methods, because of the reason that the constitutive relationship of soil is considered, and fewer assumptions on boundary conditions of slope model are necessary. However, the construction of slope numerical models, particularly for the large and complicated models has always been very difficult and it has become an obstacle for application of numerical simulation method. In this study, the excellent spatial analysis function of Geographic Information System (GIS) technique has been introduced to help numerical modeling of the slope. In the process of modeling, the topographic map of slope has been gridded using GIS software, and then the GIS data was transformed into FLAC smoothly through the program built-in language FISH. At last, the feasibility and high efficiency of this technique has been illustrated through a case study-Xuecheng slope, and both 2D and 3D models have been investigated.
Subsequently, three most widely used probabilistic analyses methods, Monte Carlo Simulation, First Order Reliability Method and Point Estimate Method applied with Strength Reduction Method have been studied. Monte Carlo Simulation which needs to repeat thousands of deterministic analysis is the most accurate probabilistic method. However it is too time consuming for practical applications, especially when it is combined with numerical simulation method. For reducing the computation effort, a simplified Monte Carlo Simulation-Strength Reduction Method (MCS-SRM) has been developed in this study. This method has estimated the probable failure of slope and calculated the mean value of safety factor by means of soil parameters first, and then calculated the variance of safety factor and reliability of slope according to the assumed probability density function of safety factor. Case studies have confirmed that this method can reduce about 4/5 of time compared with traditional MCS-SRM, and maintain almost the same accuracy.
First Order Reliability Method is an approximate method which is based on the Taylor\'s series expansion of performance function. The closed form solution of the partial derivatives of the performance function is necessary to calculate the mean and standard deviation of safety factor. However, there is no explicit performance function in numerical simulation method, so the derivative expressions have been replaced with equivalent difference quotients to solve the differential quotients approximately in this study. Point Estimate Method is also an approximate method involved even fewer calculations than FORM. In the present study, it has been integrated with Strength Reduction Method directly.
Another important observation referred to the correlation between the soil parameters cohesion and friction angle. Some authors have found a negative correlation between cohesion and friction angle of soil on the basis of experimental data. However, few slope probabilistic studies are found to consider this negative correlation between soil parameters in literatures. In this thesis, the influence of this correlation on slope probability of failure has been investigated based on numerical simulation method. It was found that a negative correlation considered in the cohesion and friction angle of soil can reduce the variability of safety factor and failure probability of slope, thus increasing the reliability of results.
Besides inter-correlation of soil parameters, these are always auto-correlated in space, which is described as spatial variability. For the reason that knowledge on this character is rather limited in literature, it is ignored in geotechnical engineering by most researchers and engineers. In this thesis, the random field method has been introduced in slope numerical simulation to simulate the spatial variability structure, and a numerical procedure for a probabilistic slope stability analysis based on Monte Carlo simulation was presented. The soil properties such as cohesion and friction angle were discretized to continuous random fields based on local averaging method. In the case study, both stationary and non-stationary random fields have been investigated, and the influence of spatial variability and averaging domain on the convergence of numerical simulation and probability of failure was studied.
In rock medium, the structure faces have very important influence on the slope stability, and the rock material can be modeled as the combination of rigid or deformable blocks with joints in distinct element method. Therefore, much more input parameters like strength of joints are required to input the rock slope model, which increase the uncertainty of the results of numerical model. Furthermore, because of the limitations of the current laboratory and in-site testes, there is always lack of exact values of geotechnical parameters from rock material, even the probability distribution of these variables. Most of time, engineers can only estimate the interval of these variables from the limit testes or the expertise’s experience. In this study, to assess the reliability of the rock slope, a Random Set Distinct Element Method (RS-DEM) has been developed through coupling of Random Set Theory and Distinct Element Method, and applied in a rock slope in Sichuan province China.
|
4 |
Approche probabiliste de la tolérance aux dommages / Application au domaine aéronautiqueMattrand, Cécile 30 November 2011 (has links)
En raison de la gravité des accidents liés au phénomène de fatigue-propagation de fissure, les préoccupations de l’industrie aéronautique à assurer l’intégrité des structures soumises à ce mode de sollicitation revêtent un caractère tout à fait essentiel. Les travaux de thèse présentés dans ce mémoire visent à appréhender le problème de sûreté des structures aéronautiques dimensionnées en tolérance aux dommages sous l’angle probabiliste. La formulation et l’application d’une approche fiabiliste menant à des processus de conception et de maintenance fiables des structures aéronautiques en contexte industriel nécessitent cependant de lever un nombre important de verrous scientifiques. Les efforts ont été concentrés au niveau de trois domaines dans ce travail. Une méthodologie a tout d’abord été développée afin de capturer et de retranscrire fidèlement l’aléa du chargement de fatigue à partir de séquences de chargement observées sur des structures en service et monitorées, ce qui constitue une réelle avancée scientifique. Un deuxième axe de recherche a porté sur la sélection d’un modèle mécanique apte à prédire l’évolution de fissure sous chargement d’amplitude variable à coût de calcul modéré. Les travaux se sont ainsi appuyés sur le modèle PREFFAS pour lequel des évolutions ont également été proposées afin de lever l’hypothèse restrictive de périodicité de chargement. Enfin, les analyses probabilistes, produits du couplage entre le modèle mécanique et les modélisations stochastiques préalablement établies, ont entre autre permis de conclure que le chargement est un paramètre qui influe notablement sur la dispersion du phénomène de propagation de fissure. Le dernier objectif de ces travaux a ainsi porté sur la formulation et la résolution du problème de fiabilité en tolérance aux dommages à partir des modèles stochastiques retenus pour le chargement, constituant un réel enjeu scientifique. Une méthode de résolution spécifique du problème de fiabilité a été mise en place afin de répondre aux objectifs fixés et appliquée à des structures jugées représentatives de problèmes réels. / Ensuring the integrity of structural components subjected to fatigue loads remains an increasing concern in the aerospace industry due to the detrimental accidents that might result from fatigue and fracture processes. The research works presented here aim at addressing the question of aircraft safety in the framework of probabilistic fracture mechanics. It should be noticed that a large number of scientific challenges requires to be solved before performing comprehensive probabilistic analyses and assessing the mechanical reliability of components or structures in an industrial context. The contributions made during the PhD are reported here. Efforts are provided on each step of the global probabilistic methodology. The modeling of random fatigue load sequences based on real measured loads, which represents a key and original step in stochastic damage tolerance, is first addressed. The second task consists in choosing a model able to predict the crack growth under variable amplitude loads, i.e. which accounts for load interactions and retardation/acceleration effects, at a moderate computational cost. The PREFFAS crack closure model is selected for this purpose. Modifications are brought in order to circumvent the restrictive assumption of stationary load sequences. Finally, probabilistic analyses resulting from the coupling between the PREFFAS model and the stochastic modeling are carried out. The following conclusion can especially be drawn. Scatter in fatigue loads considerably affects the dispersion of the crack growth phenomenon. Then, it must be taken into account in reliability analyses. The last part of this work focuses on phrasing and solving the reliability problem in damage tolerance according to the selected stochastic loading models, which is a scientific challenge. A dedicated method is established to meet the required objectives and applied to structures representative of real problems.
|
5 |
Non-deterministic analysis of slope stability based on numerical simulationShen, Hong 29 June 2012 (has links)
In geotechnical engineering, the uncertainties such as the variability and uncertainty inherent in the geotechnical properties have caught more and more attentions from researchers and engineers. They have found that a single “Factor of Safety” calculated by traditional deterministic analyses methods can not represent the slope stability exactly. Recently in order to provide a more rational mathematical framework to incorporate different types of uncertainties in the slope stability estimation, reliability analyses and non-deterministic methods, which include probabilistic and non probabilistic (imprecise methods) methods, have been applied widely. In short, the slope non-deterministic analysis is to combine the probabilistic analysis or non probabilistic analysis with the deterministic slope stability analysis. It cannot be regarded as a completely new slope stability analysis method, but just an extension of the slope deterministic analysis. The slope failure probability calculated by slope non-deterministic analysis is a kind of complement of safety factor. Therefore, the accuracy of non deterministic analysis is not only depended on a suitable probabilistic or non probabilistic analysis method selected, but also on a more rigorous deterministic analysis method or geological model adopted.
In this thesis, reliability concepts have been reviewed first, and some typical non-deterministic methods, including Monte Carlo Simulation (MCS), First Order Reliability Method (FORM), Point Estimate Method (PEM) and Random Set Theory (RSM), have been described and successfully applied to the slope stability analysis based on a numerical simulation method-Strength Reduction Method (SRM). All of the processes have been performed in a commercial finite difference code FLAC and a distinct element code UDEC.
First of all, as the fundamental of slope reliability analysis, the deterministic numerical simulation method has been improved. This method has a higher accuracy than the conventional limit equilibrium methods, because of the reason that the constitutive relationship of soil is considered, and fewer assumptions on boundary conditions of slope model are necessary. However, the construction of slope numerical models, particularly for the large and complicated models has always been very difficult and it has become an obstacle for application of numerical simulation method. In this study, the excellent spatial analysis function of Geographic Information System (GIS) technique has been introduced to help numerical modeling of the slope. In the process of modeling, the topographic map of slope has been gridded using GIS software, and then the GIS data was transformed into FLAC smoothly through the program built-in language FISH. At last, the feasibility and high efficiency of this technique has been illustrated through a case study-Xuecheng slope, and both 2D and 3D models have been investigated.
Subsequently, three most widely used probabilistic analyses methods, Monte Carlo Simulation, First Order Reliability Method and Point Estimate Method applied with Strength Reduction Method have been studied. Monte Carlo Simulation which needs to repeat thousands of deterministic analysis is the most accurate probabilistic method. However it is too time consuming for practical applications, especially when it is combined with numerical simulation method. For reducing the computation effort, a simplified Monte Carlo Simulation-Strength Reduction Method (MCS-SRM) has been developed in this study. This method has estimated the probable failure of slope and calculated the mean value of safety factor by means of soil parameters first, and then calculated the variance of safety factor and reliability of slope according to the assumed probability density function of safety factor. Case studies have confirmed that this method can reduce about 4/5 of time compared with traditional MCS-SRM, and maintain almost the same accuracy.
First Order Reliability Method is an approximate method which is based on the Taylor\'s series expansion of performance function. The closed form solution of the partial derivatives of the performance function is necessary to calculate the mean and standard deviation of safety factor. However, there is no explicit performance function in numerical simulation method, so the derivative expressions have been replaced with equivalent difference quotients to solve the differential quotients approximately in this study. Point Estimate Method is also an approximate method involved even fewer calculations than FORM. In the present study, it has been integrated with Strength Reduction Method directly.
Another important observation referred to the correlation between the soil parameters cohesion and friction angle. Some authors have found a negative correlation between cohesion and friction angle of soil on the basis of experimental data. However, few slope probabilistic studies are found to consider this negative correlation between soil parameters in literatures. In this thesis, the influence of this correlation on slope probability of failure has been investigated based on numerical simulation method. It was found that a negative correlation considered in the cohesion and friction angle of soil can reduce the variability of safety factor and failure probability of slope, thus increasing the reliability of results.
Besides inter-correlation of soil parameters, these are always auto-correlated in space, which is described as spatial variability. For the reason that knowledge on this character is rather limited in literature, it is ignored in geotechnical engineering by most researchers and engineers. In this thesis, the random field method has been introduced in slope numerical simulation to simulate the spatial variability structure, and a numerical procedure for a probabilistic slope stability analysis based on Monte Carlo simulation was presented. The soil properties such as cohesion and friction angle were discretized to continuous random fields based on local averaging method. In the case study, both stationary and non-stationary random fields have been investigated, and the influence of spatial variability and averaging domain on the convergence of numerical simulation and probability of failure was studied.
In rock medium, the structure faces have very important influence on the slope stability, and the rock material can be modeled as the combination of rigid or deformable blocks with joints in distinct element method. Therefore, much more input parameters like strength of joints are required to input the rock slope model, which increase the uncertainty of the results of numerical model. Furthermore, because of the limitations of the current laboratory and in-site testes, there is always lack of exact values of geotechnical parameters from rock material, even the probability distribution of these variables. Most of time, engineers can only estimate the interval of these variables from the limit testes or the expertise’s experience. In this study, to assess the reliability of the rock slope, a Random Set Distinct Element Method (RS-DEM) has been developed through coupling of Random Set Theory and Distinct Element Method, and applied in a rock slope in Sichuan province China.
|
Page generated in 0.086 seconds