• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An FRA Transformer Model with Application on Time Domain Reflectometry

Tavakoli, Hanif January 2011 (has links)
Frequency response analysis (FRA) is a frequency-domain method which is used to detect mechanical faults in transformers. The frequency response of a transformer is determined by its geometry and material properties, and it can be considered as the transformer’s fingerprint. If there are any mechanical changes in the transformer, for example if the windings are moved or distorted, its fingerprint will also be changed so, theoretically, mechanical changes in the transformer can be detected with FRA. A problem with FRA is the fact that there is no general agreement about how to interpret the measurement results for detection of winding damages. For instance, the interpretation of measurement results has still not been standardized.The overall goal of this thesis is to try to enhance the understanding of the information contained in FRA measurements. This has been done in two ways: (1) by examining the FRA method for (much) higher frequencies than what is usual, and (2) by developing a new method in which FRA is combined with the ideas of Time Domain Reflectometry (TDR). As tools for carrying out the above mentioned steps, models for the magnetic core and the winding have been developed and verified by comparison to measurements.The usual upper frequency limit for FRA is around 2 MHz, which in this thesis has been extended by an order of magnitude in order to detect and interpret new phenomena that emerge at high frequencies and to investigate the potential of this high-frequency region for detection of winding deteriorations.Further, in the above-mentioned new method developed in this thesis, FRA and TDR are combined as a step towards an easier and more intuitive detection and localization of faults in transformer windings, where frequency response measurements are visualized in the time domain in order to facilitate their interpretation. / QC 20111122
2

Electromagnetic Modelling of Power Transformers with DC Magnetization

Mousavi, Seyed Ali January 2012 (has links)
DC currents that flow through the ground can be injected to the star windings of power transformers from their grounded neutral points and close their path with transmission lines. The geomagnetically induced currents (GICs) and AC/DC convertors of high voltage direct current (HVDC) systems are the sources of such DC currents. These currents may cause saturation of the core in power transformers that leads to destruction in the transformer performance. This phenomenon results in unwanted influences on power transformers and the power system. Very asymmetric magnetization current, increasing losses and creation of hot spots in the core, in the windings, and the metallic structural parts are adverse effects that occur in transformers. Also, increasing demand of reactive power and misoperation of protective relays menaces the power network. Damages in large power transformers and blackouts in networks have occurred due to this phenomenon Hence, studies regarding this subject have taken the attention of researchers during the last decades. However, a gap of a comprehensive analysis still remains. Thus, the main aim of this project is to reach to a deep understanding of the phenomena and to come up with a solution for a decrease of the undesired effects of GIC. Achieving this goal requires an improvement of the electromagnetic models of transformers which include a hysteresis model, numerical techniques, and transient analysis. In this project until now, a new algorithm for digital measurement of the core materials is developed and implemented. It enhances the abilities of accurate measurements and an improved hysteresis model has been worked out. Also, a novel differential scalar hysteresis model is suggested that easily can be implemented in numerical methods. Three dimensional finite element models of various core types of power transformers are created to study the effect on them due to DC magnetization. In order to enhance the numerical tools for analysis of low frequency transients related to power transformers and the network, a distributed reluctance network method has been outlined. In this thesis a method for solving such a network problem with coupling to an electrical circuit and taking hysteresis into account is suggested. / <p>QC 20121121</p>
3

Electromagnetic Modelling of Power Transformers for Study and Mitigation of Effects of GICs

Mousavi, Seyedali January 2015 (has links)
Geomagnetic disturbances that result from solar activities can affect technological systems such as power networks. They may cause DC currents in power networks and saturation of the core in power transformers that leads to destruction in the transformer performance. This phenomena result in unwanted influences on power transformers and the power system. Very asymmetric magnetization current, increasing losses and creation of hot spots in the core, in the windings, and the metallic structural parts are adverse effects that occur in transformers. Also, increasing demand of reactive power and malfunction of protective relays menaces the power network stability. Damages in large power transformers and blackouts in networks have occurred due to this phenomenon. Hence, studies regarding this subject have taken the attention of researchers during the last decades. However, a gap of a comprehensive analysis still remains. Thus, the main aim of this project is to reach to a deep understanding of the phenomena and to come up with a solution for a decrease of the undesired effects of GIC. Achieving this goal requires an improvement of the electromagnetic models of transformers which include a hysteresis model, numerical techniques, and transient analysis. In this project, a new algorithm for digital measurement of the magnetic materials is developed and implemented. It enhances the abilities of accurate measurements and an improved hysteresis model has been worked out. Also, a novel differential scalar hysteresis model is suggested that easily can be implemented in numerical methods. Two and three dimensional finite element models of various core types of power transformers are created to study the effect of DC magnetization on transformers. In order to enhance the numerical tools for analysis of low frequency transients related to power transformers and the network, a novel topological based time step transformer model has been outlined. The model can employ a detailed magnetic circuit and consider nonlinearity, hysteresis and eddy current effects of power transformers. Furthermore, the proposed model can be used in the design process of transformers and even extend other application such as analysis of electrical machines. The numerical and experimental studies in this project lead to understanding the mechanism that a geomantic disturbance affects power transformers and networks. The revealed results conclude with proposals for mitigation strategies against these phenomena. / <p>QC 20150210</p>

Page generated in 0.0929 seconds