• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 82
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 99
  • 99
  • 29
  • 24
  • 17
  • 16
  • 15
  • 14
  • 12
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

An XML-based mission command language for autonomous underwater vehicles (AUVs) /

Hawkins, Darrin L. Van Leuvan, Barbara C. January 2003 (has links) (PDF)
Thesis (M.S. in Systems Technology)--Naval Postgraduate School, June 2003. / Thesis advisor(s): Don Brutzman, Jeff Weekley. Includes bibliographical references (p. 107-111). Also available online.
82

Dynamics modeling and control of variable length remotely operated vehicle tether

Prabhakar, Sairam 01 December 2009 (has links)
In this work, a computational model is developed to simulate the dynamics of variable length tether in a tethered underwater vehicle system. The system is comprised of a surface ship and winch, a slender armored cable that links the surface ship and the remotely operated vehicle (ROV), and the ROV itself. The cable is considered to be variable length to facilitate paying out and reeling in maneuvers. The motion equation for variable length tether is obtained from Newton's second law of motion for variable mass systems. Unlike many existing formulations. the model can treat the rapid deployment and retrieval of tether accurately. The Weighted Residual Finite Element technique is applied to the continuous motion equation to obtain a system of spatially discrete nonlinear second order differential equations. Time domain simulation of variable length maneuvers is used to validate the performance of the model for low and high tension cable states The model is applied to the development of a dynamic positioning system for a submerged point on the tether, called the control node. for the Remotely Operated Platform for Ocean Sciences (ROPOS) operated by the Canadian Scientific Submersible Facility (CSSF). A decoupled controller incorporating a Dahlin Controller for positioning in the longitudinal plane and a PD Controller for depth regulation produces ship motion and winch activity to position the control node. It is shown that the use of the control system to regulate the position of the control node brings about significant reduction in the disturbance force exerted by the tether on the ROV during a station-keeping maneuver.
83

Design and simulation of a Kalman filter for ROV navigation

Steinke, Dean 03 December 2009 (has links)
This work examines the design of a Kalman filter based navigation algorithm for the Canadian Scientific Submersible Facility's (CSSF) ROPOS ROV. The 5000m ROV is typically hired by scientists to deploy and recover small scientific instrumentation packages on the sea floor, and collect subsea biological and geological samples. To efficiently complete these tasks a navigation system that can provide a global positioning accuracy of +/-2.5m is required. However. the ROPOS navigation system presently relies on noisy USBL acoustic positioning measurements (+/- 15m at 2500m). To overcome the limitations of the USBL signal and increase the navigation system accuracy. it is proposed that a depth sensor, Doppler velocity log and OCTANS gyrocompass be used in conjunction with a model-based extended Kalman filter (EKF) algorithm to provide a single navigation data stream. To examine the efficacy of the proposed solution. non-linear models of the ROPOS ROV and its tether are presented. Parameters are identified for both the ROPOS and tether models, and the models are coupled. permitting realistic dynamic simulation of the ROPOS system. A virtual pilot, based on a PID automatic control scheme. is created to fly the virtual ROPOS vehicle between waypoints in the simulation. An instrument simulator is developed that is capable of producing asynchronous measurement data from virtual instruments. Using this simulation facility, realistic ROPOS maneuvers are executed. During the simulations, ROPOS' virtual instruments (depth sensor, DVL, USBL and OCTANS) produce pseudo-measurements that are typical of the real ROPOS sensor suite. These measurements are fed to the EKF navigation algorithm. This work successfully showed that the EKF filter framework can be used to blend ROPOS's asynchronous sensor data, such that a navigation accuracy of ≈2.5m RMS is produced. It is found that without the OCTANS instrument. the advanced ROV process model permits robust filter operation. even in cases of USBL and/or DVL drop-out. In the case where the OCTANS instrument is providing velocity data, the filter does not require an advanced ROV process model within the EKF in order to maintain filter accuracy during USBL and DVL dropout. Rather. accuracy is sufficiently maintained with a simple constant velocity model of the vehicle motion. However, it was also shown that the ROPOS velocity signal estimation can be greatly enhanced by the advanced ROPOS process model. It was also found that that the tether effects are paramount in the advanced ROPOS process model. When the tether disturbances are not sensed. the advanced model position-estimation performance is equivalent to a constant velocity process model.
84

Simulator and location-aware routing protocol for mobile ad hoc acoustic networks of AUVs

Unknown Date (has links)
Acoustic networks of autonomous underwater vehicles (AUVs) show great promise, but a lack of simulation tools and reliance on protocols originally developed for terrestrial radio networks has hindered progress. This work addresses both issues. A new simulator of underwater communication among AUVs provides accurate communication modeling and flexible vehicle behavior, while a new routing protocol, location-aware source routing (LASR) provides superior network performance. The new simulator was used to evaluate communication without networking, and then with networking using the coding or dynamic source routing (DSR) protocols. The results confirmed that a network was essential to ensure effective fleet-wide communication. The flooding protocol provided extremely reliable communication but with low message volumes. The DSR protocol, a popular routing protocol due to its effectiveness in terrestrial radio networks, proved to be a bad choice in an acoustic environment: in most cases, it suffered from both poor reliability and low message volumes. Due to the high acoustic latency, even moderate vehicle speeds caused the network topology to change faster than DSR could adapt. DSR's reliance on shortest-path routing also proved to be a significant disadvantage. Several DSR optimizations were also tested; most proved to be unhelpful or actually harmful in an underwater acoustic network. LASR was developed to address the problems noted in flooding and DSR. LASR was loosely derived from DSR, most significantly retaining source routes and the reply/request route discovery technique. However, LASR added features which proved, in simulation, to be significant advantages -- two of the most effective were a link/route metric and a node tracking system. To replace shortest-path routing, LASR used the expected transmission count (ETX) metric. / This allowed LASR to make more informed routing decisions which greatly increased performance compared to DSR. The node tracking system was the most novel addition: using only implicit communication coupled with the use of time-division multiple access (TDMA), the tracking system provided predicted node locations. These predictions made it possible for LASR to proactively respond to topology changes. In most cases, LASR outperformed flooding and DSR in message delivery reliability and message delivery volume. / by Edward A. Carlson. / Thesis (Ph.D.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
85

Task allocation and path planning for acoustic networks of AUVs

Unknown Date (has links)
Controlling the cooperative behaviors of a fleet of autonomous underwater vehicles in a stochastic, complex environment is a formidable challenge in artificial intelligence. The complexity arises from the challenges of limited navigation and communication capabilities of underwater environment. A time critical cooperative operation by acoustic networks of Multiple Cooperative Vehicles (MCVs) necessitates a robust task allocation mechanism and an efficient path planning model. In this work, we present solutions to investigate two aspects of the cooperative schema for multiple underwater vehicles under realistic underwater acoustic communications: a Location-aided Task Allocation Framework (LAAF) algorithm for multi-target task assignment and a mathematical programming model, the Grid-based Multi-Objective Optimal Programming (GMOOP), for finding an optimal vehicle command decision given a set of objectives and constraints. We demonstrate that, the location-aided auction strategies perform significantly better than the generic auction algorithm in terms of effective task allocation time and information bandwidth requirements. In a typical task assignment scenario, the time needed in the LAAF algorithm is only a fraction compared to the generic auction algorithm. On the other hand; the GMOOP path planning technique provides a unique means for multi-objective tasks by cooperative agents with limited communication capabilities. Under different environmental settings, the GMOOP path planning technique is proved to provide a method with balance of sufficient expressive power and flexibility, and its solution algorithms tractable in terms of mission completion time, with a limited increase of overhead in acoustic communication. Prior to this work, existing multi-objective action selection methods were limited to robust networks where constant communication available. / The dynamic task allocation, together with the GMOOP path planning controller, provides a comprehensive solution to the search-classify tasks for cooperative AUVs. / by Yueyue Deng. / Thesis (Ph.D.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
86

Design and Deployment Analysis of Morphing Ocean Structure

Unknown Date (has links)
As humans explore greater depths of Earth’s oceans, there is a growing need for the installation of subsea structures. 71% of the earth’s surface is ocean but there are limitations inherent in current detection instruments for marine applications leading to the need for the development of underwater platforms that allow research of deeper subsea areas. Several underwater platforms including Autonomous Underwater Vehicles (AUVs), Remote Operated Vehicles (ROVs), and wave gliders enable more efficient deployment of marine structures. Deployable structures are able to be compacted and transported via AUV to their destination then morph into their final form upon arrival. They are a lightweight, compact solution. The wrapped package includes the deployable structure, underwater pump, and other necessary instruments, and the entire package is able to meet the payload capability requirements. Upon inflation, these structures can morph into final shapes that are a hundred times larger than their original volume, which extends the detection range and also provides long-term observation capabilities. This dissertation reviews underwater platforms, underwater acoustics, imaging sensors, and inflatable structure applications then proposes potential applications for the inflatable structures. Based on the proposed applications, a conceptual design of an underwater tubular structure is developed and initial prototypes are built for the study of the mechanics of inflatable tubes. Numerical approaches for the inflation process and bending loading are developed to predict the inflatable tubular behavior during the structure’s morphing process and under different loading conditions. The material properties are defined based on tensile tests. The numerical results are compared with and verified by experimental data. The methods used in this research provide a solution for underwater inflatable structure design and analysis. Several ocean morphing structures are proposed based on the inflatable tube analysis. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection
87

Development of a morphing autonomous underwater vehicle for path and station keeping in complex current environments

Unknown Date (has links)
This thesis explores the feasibility of using morphing rudders in autonomous underwater vehicles (AUVs) to improve their performance in complex current environments. The modeling vehicle in this work corresponds to the Florida Atlantic University's Ocean EXplorer (OEX) AUV. The AUV nonlinear dynamic model is limited to the horizontal plane and includes the effect of ocean current. The main contribution of this thesis is the use of active rudders to successfully achieve path keeping and station keeping of an AUV under the influence of unsteady current force. A constant ocean current superimposed with a sinusoidal component is considered. The vehicle's response is analyzed for a range of current frequencies. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
88

Computational strategies for understanding underwater optical image datasets

Kaeli, Jeffrey W January 2013 (has links)
Thesis: Ph. D. in Mechanical and Oceanographic Engineering, Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2013. / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 117-135). / A fundamental problem in autonomous underwater robotics is the high latency between the capture of image data and the time at which operators are able to gain a visual understanding of the survey environment. Typical missions can generate imagery at rates hundreds of times greater than highly compressed images can be transmitted acoustically, delaying that understanding until after the vehicle has been recovered and the data analyzed. While automated classification algorithms can lessen the burden on human annotators after a mission, most are too computationally expensive or lack the robustness to run in situ on a vehicle. Fast algorithms designed for mission-time performance could lessen the latency of understanding by producing low-bandwidth semantic maps of the survey area that can then be telemetered back to operators during a mission. This thesis presents a lightweight framework for processing imagery in real time aboard a robotic vehicle. We begin with a review of pre-processing techniques for correcting illumination and attenuation artifacts in underwater images, presenting our own approach based on multi-sensor fusion and a strong physical model. Next, we construct a novel image pyramid structure that can reduce the complexity necessary to compute features across multiple scales by an order of magnitude and recommend features which are fast to compute and invariant to underwater artifacts. Finally, we implement our framework on real underwater datasets and demonstrate how it can be used to select summary images for the purpose of creating low-bandwidth semantic maps capable of being transmitted acoustically. / by Jeffrey W. Kaeli. / Ph. D. in Mechanical and Oceanographic Engineering
89

Numerical and experimental analysis of initial water impact of an air-dropped REMUS AUV

Roe, Stephen Michael January 2005 (has links)
Thesis (S.M.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Ocean Engineering; and the Woods Hole Oceanographic Institution), 2005. / Includes bibliographical references (leaves 78-79). / The initial water impact of a free-falling object is primarily related to the fluid forces on the wetted surface of the object. The shape-dependent added-mass coefficients express the fluid forces integrated over the body, and thus physically represent the additional inertia of water accelerated with the body. The field of hydrodynamic impact has been primarily concerned with estimating the added-mass coefficients of various types of bodies for different water impact types, such as seaplane landings, torpedo drops, and ship slamming. In this study, a numerical model has been constructed to estimate the hydrodynamic impact loads of a REMUS dropped in free-fall from a helicopter in a low hover. Developed by von Alt and associates at Woods Hole Oceanographic Institution, the REMUS (Remote Environmental Monitoring UnitS) is a small, man-portable, torpedo shaped Autonomous Underwater Vehicle (AUV) that is normally operated from small boats for a variety of scientific, industrial, and military applications. Finite-element method software and computer aided drafting tools were used to create a simplified model of REMUS without fins, propeller, or transducers. / (cont.) This axisymmetric REMUS model was cut by a flat free surface at various pitch angles and submergence values, and a panel mesh of the wetted surface of the vehicle was created using an automatic mesh generator. Surface boundary conditions are enforced for the free surface by reflecting the body panels using the method of images. Each panel mesh was evaluated for its added- mass characteristics using a source collocation panel method developed by Dr. Yonghwan Kim, formerly of the Vortical Flow Research Laboratory (VFRL) at the Massachusetts Institute of Technology. Experimental impact tests were conducted with a specially-instrumented test vehicle to verify the initial impact accelerations. / by Stephen Michael Roe. / S.M.
90

Autonomous & adaptive oceanographic feature tracking on board autonomous underwater vehicles / Autonomous and adaptive oceanographic feature tracking on board autonomous underwater vehicles

Petillo, Stephanie Marie January 2015 (has links)
Thesis: Ph. D., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2015. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Cataloged from student-submitted PDF version of thesis. Vita. / Includes bibliographical references (pages 203-213). / The capabilities of autonomous underwater vehicles (AUVs) and their ability to perform tasks both autonomously and adaptively are rapidly improving, and the desire to quickly and efficiently sample the ocean environment as Earth's climate changes and natural disasters occur has increased significantly in the last decade. As such, this thesis proposes to develop a method for single and multiple AUVs to collaborate autonomously underwater while autonomously adapting their motion to changes in their local environments, allowing them to sample and track various features of interest with greater efficiency and synopticity than previously possible with preplanned AUV or ship-based surveys. This concept is demonstrated to work in field testing on multiple occasions: with a single AUV autonomously and adaptively tracking the depth range of a thermocline or acousticline, and with two AUVs coordinating their motion to collect a data set in which internal waves could be detected. This research is then taken to the next level by exploring the problem of adaptively and autonomously tracking spatiotemporally dynamic underwater fronts and plumes using individual and autonomously collaborating AUVs. / by Stephanie Marie Petillo. / Ph. D.

Page generated in 0.0542 seconds