• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2081
  • 879
  • 372
  • 211
  • 45
  • 41
  • 41
  • 41
  • 41
  • 41
  • 40
  • 29
  • 29
  • 28
  • 26
  • Tagged with
  • 4478
  • 4478
  • 894
  • 893
  • 408
  • 389
  • 386
  • 364
  • 358
  • 345
  • 340
  • 334
  • 333
  • 298
  • 295
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1611

Water optical properties and water color remote sensing in optically deep and shallow waters of Lake Taihu, China. / CUHK electronic theses & dissertations collection

January 2011 (has links)
Xi, Hongyan. / "December 2010." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 163-176). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
1612

An application of remote sensing to terrain and vegetation analysis in the Caribou Hills, N.W.T., Canada /

Howland, William G. January 1984 (has links)
No description available.
1613

Using remote sensing, in situ observations, and geographic information systems to map benthic habitats at Heceta Bank, Oregon

Whitmire, Curt E. 08 January 2003 (has links)
Dramatic declines in many species of demersal fishes off the West Coast have resulted in the designation of nine commercially important species as being overfished. While the causes of those declines are not clearly understood, the fact remains that a paucity of life history and abundance data exists for many demersal species, also known as groundfish. Due to this uncertainty, only 21 of the 82 species of groundfish managed under the Groundfish Fishery Management Plan of the Pacific Fishery Management Council (PFMC) have been fully assessed. One challenge in designing a systematic survey of groundfish resources is that many species associate with heterogeneous substrate of varying relief. In many areas, the rugosity of the substrata precludes sampling by conventional techniques (e.g. bottom trawl gear). This has stimulated research that characterizes fish-habitat associations for use in design of new survey methodology. Using a combination of remote sensing, in situ observations, and spatial analytical techniques, four benthic habitat classes were mapped for a large rocky bank off the central Oregon coast known as Heceta Bank. Observational data from human-occupied submersible and remotely operated vehicle dives in the late 1980s, 2000 and 2001 were used to establish habitat classes with specific substrate characteristics that have been statistically shown to correlate with demersal fish distributions. The observational habitat data was then extrapolated over the extent of a multibeam sonar survey conducted in 1998 using quantitative parameters derived from high-resolution bathymetric and backscatter imagery of the seafloor. The resultant map predicts the locations of four habitat classes: Ridge-Gully, High-Relief Rock (boulders, cobbles), Unconsolidated Sediment 1 (muds), and Unconsolidated Sediment 2 (sands). The main utility of the habitat map developed as part of the current study is that it provides a context for analyses of a variety of spatial data. For instance, habitat data provides one additional spatial component besides depth and latitude that can be used to stratify catch per unit effort data from surveys and commercial logbooks. Also, essential fish habitat for many demersal species can now be identified in more detail. Finally, habitat data like those presented here can aid in the design of marine reserves and protected areas by providing a context for spatial analyses of data of ecological importance. / Graduation date: 2003
1614

Laboratory Measurements of the Millimeter Wavelength Opacity of Phosphine (PH3) and Ammonia (NH3) Under Simulated Conditions for the Cassini-Saturn Encounter

Mohammed, Priscilla Naseem 18 April 2005 (has links)
The molecular compositions of the atmospheres of the giant planets (Jupiter, Saturn, Uranus and Neptune) are fundamental to understanding the processes which formed these planets and the solar system as a whole. Microwave observations of these planets probe regions in their atmospheres from approximately 0.1 to several bars, a process otherwise unachievable by visible and infrared means. Many gases and various cloud layers influence the millimeter wave spectra of the outer planets; however phosphine and ammonia are the main microwave absorbers at Saturn at pressures less than two bars. Understanding the pressure induced absorption of both constituents at observational frequencies is therefore vital to the analysis of any observational data. Laboratory measurements have been conducted to measure the microwave absorptivity and refractivity of phosphine and ammonia at Ka-band (32-40 GHz) and W-band (94 GHz), under conditions characteristic of the atmosphere of Saturn. The results were used to verify the accuracy of the phosphine formalism created by Hoffman et. al (2001) for use at millimeter wavelengths. Based on the laboratory measurements conducted, new formalisms were also created to express the opacity of ammonia at the measured frequencies. An important method for the study of planetary atmospheres is the radio occultation experiment ??method that uses radio links between Earth, and the spacecraft which passes behind the planet. The Cassini mission to Saturn, which will be conducting such experiments at Ka-band as well as S (2.3 GHz) and X (8.4 GHz) bands, has prompted the development of a radio occultation simulator used to calculate excess Doppler shifts and attenuation profiles for Saturn, utilizing the newest formalisms for phosphine and ammonia. The results indicate that there will be unambiguous detection and profiling of phosphine and ammonia, and predictions are made for the pressures at which loss of signal is anticipated.
1615

Reconstruction of irregularly sampled interferograms in imaging Fourier transform spectrometry

Tian, Jialin 02 1900 (has links)
No description available.
1616

Constraining global biogenic emissions and exploring source contributions to tropospheric ozone: modeling applications.

Shim, Changsub 26 June 2006 (has links)
Biogenic isoprene plays an important role in tropospheric chemistry. We use HCHO column measurements by the Global Ozone Monitoring Experiment (GOME) to constrain isoprene emissions. Using the global Goddrad Earth Observing SystemChemistry (GEOS-Chem) as the forward model, a Bayesian inversion of GOME HCHO observations from September 1996 to August 1997 is conducted. Column contributions to HCHO from 12 sources including 10 terrestrial ecosystem groups, biomass burning, and industry are considered and inverted for 8 geographical regions globally. The a posteriori solution reduces the model biases for all regions, and estimates the annual global isoprene emissions of 566 Tg C yr-1, ~50% larger than the a priori estimate. Compared to the Global Emissions Inventory Activity (GEIA) inventory (~500 Tg C yr-1), the a posteriori isoprene emissions are generally higher at mid latitudes and lower in the tropics. This increase of global isoprene emissions significantly affects tropospheric chemistry, decreasing the global mean OH concentration by 10.8% to 0.95106 molecules/cm3. The atmospheric lifetime of CH3CCl3 increases from 5.2 to 5.7 years. Positive matrix factorization (PMF), an advanced method for source apportionment, is applied to TRAnsport of Chemical Evolution over the Pacific (TRACE-P) measurements and it is found that cyanogenesis in plants over Asia is likely an important emission process for CH3COCH3 and HCN. This approach also is applied to estimate source contributions to the tropospheric ozone (O3) with Tropospheric Ozone Production about the Spring Equinox (TOPSE) and TRACE-P measurements. The corresponding GEOS-Chem simulations are applied to the same factor-projected space in order to evaluate the model simulations. Intercontinental transport of pollutants is most responsible for increasing trend of springtime O3, while stratospheric influence is the largest contributions to troposperic O3 variability at northern middle and high latitudes. On the other hand, the overall tropospheric contributions to O3 variability are more important at northern low latitudes by long-range transport, biomass burning, and industry/urban emissions. In general, the simulated O3 variabilities are comparable with those of observations. However, the model underestimates the trends of and the contributions to O3 variability by long-range transport of O3 and its precursors at northern middle and high latitudes.
1617

Remote sensing in shallow lake ecology

Hunter, Peter D. January 2007 (has links)
Shallow lakes are an important ecological and socio-economic resource. However, the impact of human pressures, both at the lake and catchment scale, has precipitated a decline in the ecological status of many shallow lakes, both in the UK, and throughout Europe. There is now, as direct consequence, unprecedented interest in the assessment and monitoring of ecological status and trajectory in shallow lakes, not least in response to the European Union Water Framework Directive (2000/60/EC). In this context, the spatially-resolving and panoramic data provided by remote sensing platforms may be of immense value in the construction of effective and efficient strategies for the assessment and monitoring of ecological status in shallow lakes and, moreover, in providing new, spatially-explicit, insights into the function of these ecosystems and how they respond to change. This thesis examined the use of remote sensing data for the assessment of (i) phytoplankton abundance and species composition and (ii) aquatic vegetation distribution and ecophysiological status in shallow lakes with a view to establishing the credence of such an approach and its value in limnological research and monitoring activities. High resolution in-situ and airborne remote sensing data was collected during a 2-year sampling campaign in the shallow lakes of the Norfolk Broads. It was demonstrated that semi-empirical algorithms could be formulated and used to provide accurate and robust estimations of the concentration of chlorophyll-a, even in these optically-complex waters. It was further shown that it was possible to differentiate and quantify the abundance of cyanobacteria using the biomarker pigment C-phycocyanin. The subsequent calibration of the imagery obtained from the airborne reconnaissance missions permitted the construction of diurnal and seasonal regional-scale time-series of phytoplankton dynamics in the Norfolk Broads. This approach was able to deliver unique spatial insights into the migratory behaviour of a potentially-toxic cyanobacterial bloom. It was further shown that remote sensing can be used to map the distribution of aquatic plants in shallow lakes, importantly including the extent of submerged vegetation, which is central to the assessment of ecological status. This research theme was subsequently extended in an exploration of the use of remote sensing for assessing the ecophysiological response of wetland plants to nutrient enrichment. It was shown that remote sensing metrics could be constructed for the quantification of plant vigour. The extrapolation of these techniques enabled spatial heterogeneity in the ecophysiological response of Phragmites australis to lake nutrient enrichment to be characterised and assisted the formulation of a mechanistic explanation for the variation in reedswamp performance in these shallow lakes. It is therefore argued that the spatially synoptic data provided by remote sensing has much to offer the assessment, monitoring and policing of ecological status in shallow lakes and, in particular, for facilitating the development of pan-European scale lake surveillance capabilities for the Water Framework Directive (2000/60/EC). It is also suggested that remote sensing can make a valuable contribution to furthering ecological understanding and, most significantly, in enabling ecosystem processes and functions to be examined at the lake-scale.
1618

Analyse spektroradiometrischer in situ Messungen als Datenquelle für die teilflächenspezifische Zustandsbeschreibung von Winterweizenbeständen / Analysis of spectroradiometric field measurements for a site specific estimation of crop parameters in winter wheat

Erasmi, Stefan 17 June 2002 (has links)
No description available.
1619

The role of airphoto and satellite image interpretation in analysing volcanic landforms and structures in the eastern part of the Trans Mexican Volcanic Belt, Mexico /

Werle, Dirk. January 1984 (has links)
No description available.
1620

An investigation into using textural analysis and change detection techniques on medium and high spatial resolution imagery for monitoring plantation forestry operations.

Norris-Rogers, Mark. January 2006 (has links)
Plantation forestry involves the management of man-made industrial forests for the purpose of producing raw materials for the pulp and paper, saw milling and other related wood products industries. Management of these forests is based on the cycle of planting, tending and felling of forest stands such that a sustainable operation is maintained. The monitoring and reporting of these forestry operations is critical to the successful management of the forestry industry. The aim of this study was to test whether the forestry operations of clear-felling, re-establishment and weed control could be qualitatively and quantitatively monitored through the application of classification and change detection techniques to multi-temporal medium (15-30 m) and a combination of textural analysis and change detection techniques on high resolution (0.6-2.4 m) satellite imagery. For the medium resolution imagery, four Landsat 7 multi-spectral images covering the period from March 2002 to April 2003 were obtained over the midlands of KwaZulu-Natal, South Africa, and a supervised classification, based on the Maximum Likelihood classifier, as well as two unsupervised classification routines were applied to each of these images. The supervised classification routine used 12 classes identified from ground-truthing data, while the unsupervised classification was done using 10 and 4 classes. NDVI was also calculated and used to estimate vegetation status. Three change detection techniques were applied to the unsupervised classification images, in order to determine where clear-felling, planting and weed control operations had occurred. An Assisted "Classified" Image change detection technique was applied to the Ten-Class Unsupervised Classification images, while an Assisted "Quantified Classified" change detection technique was applied to the Four-Class Unsupervised Classification images. An Image differencing technique was applied to the NDVI images. For the high resolution imagery, a series of QuickBird images of a plantation forestry site were used and a combination of textural analysis and change detection techniques was tested to quantify weed development in replanted forest stands less than 24 months old. This was achieved by doing an unsupervised classification on the multi-spectral bands, and an edge-enhancement on the panchromatic band. Both the resultant datasets were then vectorised, unioned and a matrix derived to determine areas of high weed. It was found that clear-felling operations could be identified with accuracy in excess of 95%. However, using medium resolution imagery, newly planted areas and the weed status of forest stands were not definitively identified as the spatial resolution was too coarse to separate weed growth from tree stands. Planted stands younger than one year tended to be classified in the same class as bare ground or ground covered with dead branches and leaves, even if weeds were present. Stands older than one year tended to be classified together in the same class as weedy stands, even where weeds were not present. The NDVI results indicated that further research into this aspect could provide more useful information regarding the identification of weed status in forest stands. Using the multi-spectral bands of the high resolution imagery it was possible to identify areas of strong vegetation, while crop rows were identifiable on the panchromatic band. By combining these two attributes, areas of high weed growth could be identified. By applying a post-classification change detection technique on the high weed growth classes, it was possible to identify and quantify areas of weed increase or decrease between consecutive images. A theoretical canopy model was also derived to test whether it could identify thresholds from which weed infestations could be determined. The conclusions of this study indicated that medium resolution imagery was successful in accurately identifying clear-felled stands, but the high resolution imagery was required to identify replanted stands, and the weed status of those stands. However, in addition to identifying the status of these stands, it was also possible to quantify the level of weed infestation. Only wattle (Acacia mearnsii) stands were tested in this manner but it was recommended that in addition to applying these procedures to wattle stands, they also are tested in Eucalyptus and Pinus stands. The combination of textural analysis on the panchromatic band and classification of multi-spectral bands was found to be a suitable process to achieve the aims of this study, and as such were recommended as standard procedures that could be applied in an operational plantation forest monitoring environment. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2006.

Page generated in 0.0836 seconds