• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 10
  • 3
  • 1
  • Tagged with
  • 60
  • 23
  • 16
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Frequency Rendezvous and Physical Layer Network Coding for Distributed Wireless Networks

Pu, Di 22 October 2009 (has links)
"In this thesis, a transmission frequency rendezvous approach for secondary users deployed in decentralized dynamic spectrum access networks is proposed. Frequency rendezvous is a critical step in bootstrapping a wireless network that does not possess centralized control. Current techniques for enabling frequency rendezvous in decentralized dynamic spectrum access networks either require pre-existing infrastructure or use one of several simplifying assumptions regarding the architecture, such as the use of regularly spaced frequency channels for communications. Our proposed approach is designed to be operated in a strictly decentralized wireless networking environment, where no centralized control is present and the spectrum does not possess pre-defined channels. In our proposed rendezvous algorithm, the most important step is pilot tone detection and receiver query. In order to realize a shortest search time for the target receiver, an efficient scanning rule should be employed. In this thesis, three scanning rules are proposed and evaluated, namely: frequency sequence scanning, pilot tone strength scanning, and cluster scanning. To validate our result, we test our scanning rules with actual paging band spectrum measurements. Previous research on security of network coding focuses on the protection of data dissemination procedures and the detection of malicious activities such as pollusion attacks. The capabilities of network coding to detect other attacks has not been fully explored. In this thesis, a new mechanism based on physical layer network coding to detect wormhole attacks is proposed. When two signal sequences collide at the receiver, the difference between the two received sequences is determined by its distances to the senders. Therefore, by comparing the differences between the received sequences at two nodes, we can estimate the distance between them and detect those fake neighbor connections through wormholes. While the basic idea is clear, we design many schemes at both physical and network layers to turn the idea into a practical approach. Simulations using BPSK modulation at the physical layer show that the wireless nodes can effectively detect fake neighbor connections without the adoption of any special hardware on them."
22

Model-based Fault Diagnosis and Fault Accommodation for Space Missions : Application to the Rendezvous Phase of the MSR Mission / Diagnostique de défaut à base de modèle et accommodation de défaut pour missions spatiales

Fonod, Robert 19 November 2014 (has links)
Les travaux de recherche traités dans cette thèse s’appuient sur l’expertise des actionsmenées entre l’Agence spatiale européenne (ESA), l’industrie Thales Alenia Space (TAS) et le laboratoirede l’Intégration du Matériau au Système (IMS) qui développent de nouvelles générations d’unités intégréesde guidage, navigation et pilotage (GNC) avec une fonction de détection des défauts et de tolérance desdéfauts. La mission de référence retenue dans cette thèse est la mission de retour d’échantillons martiens(Mars Sample Return, MSR) de l’ESA. Ce travail se concentre sur la séquence terminale du rendez-vous dela mission MSR qui correspond aux dernières centaines de mètres jusqu’à la capture. Le véhicule chasseurest l’orbiteur MSR (chasseur), alors que la cible passive est un conteneur sphérique. L’objectif au niveaude contrôle est de réaliser la capture avec une précision inférieure à quelques centimètres. Les travaux derecherche traités dans cette thèse s’intéressent au développement des approches sur base de modèle de détectionet d’isolation des défauts (FDI) et de commande tolérante aux défaillances (FTC), qui pourraientaugmenter d’une manière significative l’autonomie opérationnelle et fonctionnelle du chasseur pendant lerendez-vous et, d’une manière plus générale, d’un vaisseau spatial impliqué dans des missions située dansl’espace lointain. Dès lors que la redondance existe dans les capteurs et que les roues de réaction ne sontpas utilisées durant la phase de rendez-vous, le travail présenté dans cette thèse est orienté seulementvers les systèmes de propulsion par tuyères. Les défaillances examinées ont été définies conformément auxexigences de l’ESA et de TAS et suivant leurs expériences. Les approches FDI/FTC présentées s’appuientsur la redondance de capteurs, la redirection de contrôle et sur les méthodes de réallocation de contrôle,ainsi que le FDI hiérarchique, y compris les approches à base de signaux au niveau de capteurs, les approchesà base de modèle de détection/localisation de défauts de propulseur et la surveillance de sécuritéde trajectoire. Utilisant un simulateur industriel de haute-fidélité, les indices de performance et de fiabilitéFDI, qui ont été soigneusement choisis accompagnés des campagnes de simulation de robustesse/sensibilitéMonte Carlo, démontrent la viabilité des approches proposées. / The work addressed in this thesis draws expertise from actions undertaken between the EuropeanSpace Agency (ESA), the industry Thales Alenia Space (TAS) and the IMS laboratory (laboratoirede l’Intégration du Matériau au Système) which develop new generations of integrated Guidance, Navigationand Control (GNC) units with fault detection and tolerance capabilities. The reference mission isthe ESA’s Mars Sample Return (MSR) mission. The presented work focuses on the terminal rendezvoussequence of the MSR mission which corresponds to the last few hundred meters until the capture. Thechaser vehicle is the MSR Orbiter, while the passive target is a diameter spherical container. The objectiveat control level is a capture achievement with an accuracy better than a few centimeter. The research workaddressed in this thesis is concerned by the development of model-based Fault Detection and Isolation(FDI) and Fault Tolerant Control (FTC) approaches that could significantly increase the operational andfunctional autonomy of the chaser during rendezvous, and more generally, of spacecraft involved in deepspace missions. Since redundancy exist in the sensors and since the reaction wheels are not used duringthe rendezvous phase, the work presented in this thesis focuses only on the thruster-based propulsionsystem. The investigated faults have been defined in accordance with ESA and TAS requirements andfollowing their experiences. The presented FDI/FTC approaches relies on hardware redundancy in sensors,control redirection and control re-allocation methods and a hierarchical FDI including signal-basedapproaches at sensor level, model-based approaches for thruster fault detection/isolation and trajectorysafety monitoring. Carefully selected performance and reliability indices together with Monte Carlo simulationcampaigns, using a high-fidelity industrial simulator, demonstrate the viability of the proposedapproaches.
23

Analysis and Design of a Test Apparatus for Resolving Near-Field Effects Associated With Using a Coarse Sun Sensor as Part of a 6-DOF Solution

Stancliffe, Devin Aldin 2010 August 1900 (has links)
Though the Aerospace industry is moving towards small satellites and smaller sensor technologies, sensors used for close-proximity operations are generally cost (and often size and power) prohibitive for University-class satellites. Given the need for low-cost, low-mass solutions for close-proximity relative navigation sensors, this research analyzed the expected errors due to near-field effects using a coarse sun sensor as part of a 6-degree-of-freedom (6-dof) solution. To characterize these near-field effects, a test bed (Characterization Test Apparatus or CTA) was proposed, its design presented, and the design stage uncertainty analysis of the CTA performed. A candidate coarse sun sensor (NorthStarTM) was chosen for testing, and a mathematical model of the sensor’s functionality was derived. Using a Gaussian Least Squares Differential Correction (GLSDC) algorithm, the model parameters were estimated and a comparison between simulated NorthStarTM measurements and model estimates was performed. Results indicate the CTA is capable of resolving the near-field errors. Additionally, this research found no apparent show stoppers for using coarse sun sensors for 6-dof solutions.
24

An Autonomous Guidance Scheme For Orbital Rendezvous

Shankar, G S 01 1900 (has links)
The word 'rendezvous' implies a pre-arranged meeting between two entities for a specific purpose. This term is used in the study of spacecraft operations, to describe a set of maneuvers performed by two spacecraft in order to achieve a match in position and velocity. The term 'orbital rendezvous' applies to rendezvous between spacecraft in earth-centered orbits. Considering its obvious scope for application in the assembly, maintenance and retrieval of earth satellites, the importance of orbital rendezvous towards maintaining a sustained presence in space can be easily appreciated. This particular study deals with the development of a guidance scheme for an orbital rendezvous operation, wherein only one of the spacecraft, called the chaser, is assumed to be provided with a capability to maneuver, while the other spacecraft, the target, is assumed to be thrust-free or passive. There is presently a lot of interest in autonomous trajectory planning and guidance schemes for orbital rendezvous missions. Autonomy here, refers to the absence of ground supervision and control over the on-board planning and guidance process, and is expected to result in greater mission flexibility and lower operating costs. The terms trajectory planning and guidance collectively refer to the optimization process used to determine minimum-fuel trajectories, and the means employed to make the spacecraft follow them, based on navigational updates. The challenge lies mainly in making the autonomous scheme real-time implementable, and at the same time compatible with the limited computational capabilities available on-board. It is well known that a large part of the computation times and costs, when determining optimal trajectories, are taken up by (1) the prediction of spacecraft motion using numerical integration schemes, and (2) the use of iterative numerical techniques to solve the non-linear, coupled system of equations obtained as boundary conditions in the trajectory optimization problem. There exists on the other hand, a wealth of results from analytical investigations into the motion of spacecraft, that can be profitably utilized by use of suitable assumptions, to reduce computation times and costs relating to trajectory prediction. The present thesis seeks to follow this course, while trying to ensure that the assumptions made do not influence in a negative manner the accuracy of the guidance scheme. The assumptions to be described below are based on the division of the total rendezvous maneuver into sub-phases. The trajectory optimization problems for the individual sub-phases are first considered independent of one another. A method is then found to combine the two sub-phases in an optimal manner. The initial or the homing phase of the rendezvous maneuver, consists of an open-loop orbit transfer, intended to place the chaser within a 'window of proximity' spanning a few hundreds of kilometers, of the target. In order to avoid time consuming numerical integration of the non-homogeneous, non-linear central force-field equations of motion, an impulsive thrust model is assumed. A parametric optimization method is used to determine the location, orientation and magnitude of the impulses for a minimum-fuel rendezvous transfer, as it is well known that parametric optimization methods are robust compared to the more general functional optimization methods. A two-impulse transfer is selected, knowing that at least two-impulses are required for a rendezvous maneuver, and that methods are available if necessary, to obtain optimal multi-impulse trajectories from a two-impulse solution. The total characteristic velocity, a scalar cost function related to fuel-consumption, is minimized with respect to a set of independent variables. The variables chosen in this case to determine the rendezvous transfer are (1) the transfer angle θc defining an initial coast in the chaser orbit C by the chaser, (2) the transfer angle θs defining a coast by the target to the position of the second impulse in the target orbit S and (3) a parameter (say p ) that determines the shape of the transfer orbit T between the first and second impulses.
25

Model predictive control for spacecraft rendezvous

Hartley, Edward Nicholas January 2010 (has links)
No description available.
26

Analysis of Square-Root Kalman Filters for Angles-Only Orbital Navigation and the Effects of Sensor Accuracy on State Observability

Schmidt, Jason Knudsen 01 May 2010 (has links)
Angles-only navigation is simple, robust, and well proven in many applications. However, it is sometimes ill-conditioned for orbital rendezvous and proximity operations because, without a direct range measurement, the distance to approaching satellites must be estimated by firing thrusters and observing the change in the target's bearing. Nevertheless, the simplicity of angles-only navigation gives it great appeal. The viability of this technique for relative navigation is examined by building a high-fidelity simulation and evaluating the sensitivity of the system to sensor errors. The relative performances of square-root filtering methods, including Potter, Carlson, and UD factorization filters, are compared to the conventional and Joseph formulations. Filter performance is evaluated during closed-loop "station keeping" operations in simulation.
27

Angles-Only Navigation for Autonomous Orbital Rendezvous

Woffinden, David Charles 01 December 2008 (has links)
The proposed thesis of this dissertation has both a practical element and theoretical component which aim to answer key questions related to the use of angles-only navigation for autonomous orbital rendezvous. The first and fundamental principle to this work argues that an angles-only navigation filter can determine the relative position and orientation (pose) between two spacecraft to perform the necessary maneuvers and close proximity operations for autonomous orbital rendezvous. Second, the implementation of angles-only navigation for on-orbit applications is looked upon with skeptical eyes because of its perceived limitation of determining the relative range between two vehicles. This assumed, yet little understood subtlety can be formally characterized with a closed-form analytical observability criteria which specifies the necessary and sufficient conditions for determining the relative position and velocity with only angular measurements. With a mathematical expression of the observability criteria, it can be used to 1) identify the orbital rendezvous trajectories and maneuvers that ensure the relative position and velocity are observable for angles-only navigation, 2) quantify the degree or level of observability and 3) compute optimal maneuvers that maximize observability. In summary, the objective of this dissertation is to provide both a practical and theoretical foundation for the advancement of autonomous orbital rendezvous through the use of angles-only navigation.
28

Multi-Agent Cooperative Control via a Unified Optimal Control Approach

Wang, Jianan 09 December 2011 (has links)
Recent rapid advances in computing, communication, sensing, and actuation, together with miniaturization technologies, have offered unprecedented opportunities to employ large numbers of autonomous vehicles (air, ground, and water) working cooperatively to accomplish a mission. Cooperative control of such multi-agent dynamical systems has potential impact on numerous civilian, homeland security, and military applications. Compared with single-agent control problems, new theoretical and practical challenges emerge and need to be addressed in cooperative control of multiagent dynamical systems, including but not limited to problem size, task coupling, limited computational resources at individual agent level, communication constraints, and the need for real-time obstacle/collision avoidance. In order to address these challenges, a unified optimal multi-agent cooperative control strategy is proposed to formulate the multi-objective cooperative control problem into one unified optimal control framework. Many cooperative behaviors, such as consensus, cooperative tracking, formation, obstacle/collision avoidance, or flocking with cohesion and repulsion, can be treated in one optimization process. An innovative inverse optimal control approach is utilized to include these cooperative objectives in derived cost functions such that a closedorm cooperative control law can be obtained. In addition, the control law is distributed and only depends on the local neighboring agents’ information. Therefore, this new method does not demand intensive computational load and is easy for real-time onboard implementation. Furthermore, it is very scalable to large multi-agent cooperative dynamical systems. The closed-loop asymptotic stability and optimality are theoretically proved. Simulations based on MATLAB are conducted to validate the cooperative behaviors including consensus, Rendezvous, formation flying, and flocking, as well as the obstacle avoidance performance.
29

Motion coordination and control in systems of nonholonomic autonomous vehicles / Bewegungskoordination und Regelung in Gruppen nichtholonomer autonomer Fahrzeuge

Hess, Martin January 2009 (has links) (PDF)
This work focuses on coordination methods and the control of motion in groups of nonholonomic wheeled mobile robots, in particular of the car-like type. These kind of vehicles are particularly restricted in their mobility. In the main part of this work the two problems of formation motion coordination and of rendezvous in distributed multi-vehicle systems are considered. We introduce several enhancements to an existing motion planning approach for formations of nonholonomic mobile robots. Compared to the original method, the extended approach is able to handle time-varying reference speeds as well as adjustments of the formation's shape during reference trajectory segments with continuously differentiable curvature. Additionally, undesired discontinuities in the speed and steering profiles of the vehicles are avoided. Further, the scenario of snow shoveling on an airfield by utilizing multiple formations of autonomous snowplows is discussed. We propose solutions to the subproblems of motion planning for the formations and tracking control for the individual vehicles. While all situations that might occur have been tested in a simulation environment, we also verified the developed tracking controller in real robot hardware experiments. The task of the rendezvous problem in groups of car-like robots is to drive all vehicles to a common position by means of decentralized control laws. Typically there exists no direct interaction link between all of the vehicles. In this work we present decentralized rendezvous control laws for vehicles with free and with bounded steering. The convergence properties of the approaches are analyzed by utilizing Lyapunov based techniques. Furthermore, they are evaluated within various simulation experiments, while the bounded steering case is also verified within laboratory hardware experiments. Finally we introduce a modification to the bounded steering system that increases the convergence speed at the expense of a higher traveled distance of the vehicles. / Diese Arbeit befasst sich mit Methoden zur Bewegungskoordination und Regelung in Gruppen autonomer, nichtholomer Fahrzeuge, wobei vornehmlich autoähnliche mobile Roboter betrachtet werden. Diese Fahrzeuge sind besonders eingeschränkt in ihrer Bewegungsfreiheit. Im Hauptteil der Arbeit werden die Probleme der Formationsbewegung und des Rendezvous in Gruppen verteilter Fahrzeuge betrachtet. Für ein bestehendes Verfahren zur Bewegungsplanung für Formationen nichtholonomer, mobiler Fahrzeuge werden eine Reihe von Verbesserungen vorgestellt. Diese ermöglichen dem erweiterten Verfahren den Umgang mit Referenztrajektorien mit nicht-konstanter Geschwindigkeit und stetig differenzierbarer Krümmung. Außerdem werden im Gegensatz zum ursprünglichen Ansatz unerwünschte Sprungstellen in den Geschwindigkeits- und Krümmungsprofilen der Fahrzeuge vermieden. Desweiteren wird in dieser Arbeit das Schneeräumen auf Flughafenrollfeldern mittels Formationen autonomer Schneepflugfahrzeuge diskutiert. Dabei werden Lösungen für die Teilprobleme Bewegungsplanung der Formationen und Spurführungsregelung der einzelnen Fahrzeuge vorgestellt. Zusätzlich zu den durchgeführten Simulationen werden außerdem die Ergebnisse von Hardwareexperimenten mit der entwickelten Spurführungsregelung präsentiert. Das Rendezvous-Problem in Gruppen autoähnlicher Roboter besteht darin, die Fahrzeuge durch dezentrale Regelgesetze zu einer gemeinsamen Position in der Ebene zu bewegen. Dabei besteht typischerweise keine direkte Interaktionsverbindung zwischen allen Fahrzeugen der Gruppe. In dieser Arbeit werden verteilte Rendezvous-Regelgesetze für Fahrzeuge mit unbeschränktem und mit beschränktem Lenkwinkel eingeführt und deren Konvergenzeigenschaften mit Methoden zur Stabilitätsanalyse nicht-linearer Systeme untersucht. Die vorgestellten Regelsysteme werden weiterhin anhand von Simulationen und Hardwareexperimenten verifiziert. Schließlich wird noch eine Erweiterung des Systems für Fahrzeuge mit beschränktem Lenkwinkel vorgestellt, welches die Konvergenzgeschwindigkeit auf Kosten der zurückgelegten Distanz der Fahrzeuge erhöht.
30

Aerial Rendezvous Between an Unmanned Air Vehicle and an Orbiting Target Vehicle

Owen, Mark Andrew 18 October 2011 (has links) (PDF)
In this thesis we develop methods that facilitate an aerial rendezvous between two air vehicles. The objective of this research is to produce a method that can be used to insert a miniature air vehicle behind a rendezvous vehicle and then track that vehicle to enable a visual rendezvous. For this research we assume the rendezvous vehicle is following a relatively stable and roughly elliptical orbit. Path planners and controllers have been developed that can be used to effectively intercept the rendezvous vehicle by inserting the MAV onto the orbit of interest. A method for planning and following time-optimal Dubins airplane interception paths between a miniature air vehicle and the rendezvous vehicle is presented. We demonstrate how a vector field path following a scheme can be used for navigation along these time-optimal Dubins airplane paths. A post-orbit insertion tracking method is also presented which can be used to track the target vehicle on an arbitrarily oriented elliptical orbit while maintaining a specified following distance. We also present controllers that can be used for disturbance rejection during the orbit-insertion and interception operations. All of these methods were implemented in simulation and with hardware. Results from these implementations are presented and analyzed.

Page generated in 0.0716 seconds