• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1653
  • 378
  • 195
  • 113
  • 88
  • 80
  • 51
  • 50
  • 42
  • 36
  • 28
  • 18
  • 12
  • 12
  • 12
  • Tagged with
  • 3270
  • 2555
  • 808
  • 726
  • 607
  • 509
  • 395
  • 339
  • 337
  • 336
  • 306
  • 304
  • 285
  • 262
  • 245
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Impact of stochastic renewable distributed generation on urban distribution networks

Kim, Insu 07 January 2016 (has links)
The main objective of this study is to analyze the impact of the stochastic renewable distributed generation (DG) system on the urban distribution network. Renewable DG systems, particularly photovoltaic (PV) systems, dispersed on the distribution network may, in spite of their relatively small individual capacities, change the behavior of such a network. Therefore, this study (1) developed tools and algorithms useful for planning, designing, and operating such a network, (2) addressed some of the issues in the analysis of the impact of renewable DG systems on such a network, and (3) designed a framework for streamlining the future development and the smooth integration of renewable DG systems into the urban distribution network. For this purpose, in Task 1, using the backward and forward sweep method implemented in MATLAB, this study developed an algorithm for three-phase power flow that models power system components, including distribution systems, transformers, and PV systems. To model the influence of the inherent uncertainty of the input, the location, and the capacity of the PV system, this study implemented a stochastic simulation algorithm combined with the power-flow algorithm. It also accelerated the stochastic algorithm using a method of variance reduction, including importance sampling, and the sampling of representative clusters and extreme points, which reduced the extremely heavy computational burden that the stochastic simulation inevitably imposed. Then this study analyzed inherent uncertainties such as the inputs, the locations, and the capacities of residential PV systems stochastically installed on urban distribution networks by performing several stochastic simulations. In Task 2, this study developed a genetic algorithm in MATLAB that solves an optimization problem that maximizes the reliability (or minimizes the frequency and the duration of failure) of urban distribution networks enhanced by protection devices (i.e., the recloser, the fuse, and the switch) and renewable DG. Using the backward and forward method, this study implemented an analytical method that simulates all possible permanent and transient faults and evaluated the reliability of an urban distribution network housing a combination of fuses, switches, reclosers, and DG systems. Then it analyzed the impact of both the DG system, including the effect of the islanded operation of the DG system, and the protection device, on the reliability of the urban distribution network. The objective of Task 3 of this study was to present a useful method for analyzing the impact of geographically dispersed DG systems, particularly PV systems, on statewide and nationwide power grids. Using the methods of Lagrangian optimization and hydrothermal coordination, this study developed an algorithm for environmentally constrained generation resource allocation that minimizes both fuel costs and ecological impact, including the cost and the impact of water consumption. Then, this study (1) analyzed, as an example of the statewide power grid of the future, the power system of the state of Georgia in 2010, (2) modeled the load consumption and the water inflow of the power system, (3) synthesized third-order power output functions for costs, emissions, and water consumption from actual heat-rate data, and (4) estimated the power output of PV systems geographically dispersed throughout the state and hydroelectric resources of the state in hourly intervals. Lastly, it performed simulations for the generation resource allocation of the power system in hourly and minute intervals.
22

PERSPECTIVES/VISIONS/ACTIONS IN LANDSCAPE DECISION-MAKING

Sheehan, Michele January 1994 (has links)
The Perspectives/Visions/Actions framework is designed to facilitate deeper understanding of issues and broader inclusion of publics in landscape decision-making conversations. A parallel analysis of landscape and policy theory was used to constructed the framework. Common terminology and visual expression of spatial/temporal aspects of landscape are viewed through the interactive segments of Perspectives, Visions, and Actions. Perspectives described through landscape/human relationships and intuitive images of landscape provide insight into various viewpoints. Visions, visual landscape features described in landscape ecology terminology, provide a base for development of potential scenarios. Actions, Tools and Rules, relate viewpoints and scenarios to a range of choices for implementing change. Document content analysis, open-ended interviews, and systematic establishment of a transect baseline from aerial photographs were used to historically analyze three shoreline landscapes (Indiana Dunes National Lakeshore, Cape Cod and Point Reyes National Seashores) through framework language and schematic. Landscape information, viewpoints, and choices within the case study landscapes were uniquely illustrated. Perspectives groupings of intuitive images indicated ovelapping viewpoints and set an inclusive base for landscape information types. Visions landscape ecology language used both to construct the schematic and to translate information into comron expressions provided a base for issue discussion. Actions tools and rules data provided examples of implementation choices which related to the Perspectives and Visions.
23

The impact of UK green power marketing within a liberalised European electricity supply industry

Potiphar, Lee Christopher January 2002 (has links)
No description available.
24

Proton radiation effects on space solar cell structures and materials

Taylor, Paul Alan January 1996 (has links)
No description available.
25

Control of a Single-Phase Grid-Connected Voltage Source Inverter with LCL Filter

Eren, Suzan Zeynep 02 October 2013 (has links)
This thesis presents new control approaches for improving the performance, stability, and efficiency of a single-phase grid-connected voltage source inverter (VSI) with an LCL filter that is used in renewable energy power conditioning applications. There are two main controllers that need to be designed: an external DC-bus voltage controller to balance the power flow coming into the VSI, and an internal current controller to control the current injected by the VSI into the utility grid. This thesis aims to find well-tailored control approaches for the aforementioned control loops. First, the stability and behavioral characteristics of the open-loop VSI with an LCL filter are explored using a Poincaré map, and the open-loop system is found to have marginal stability. A current control method is proposed, called composite nonlinear feedback (CNF), which offers significantly improved overall performance compared to the state-of-the-art proportional resonant (PR) controller with state feedback. To reduce the overall number of sensors in the system, two different observers are implemented to estimate the VSI state variables: (1) the Luenberger observer (LO), and (2) the sliding mode observer (SMO). To balance the system power flow, a new DC-bus voltage droop control method is proposed, that provides fast performance during transients. This control approach includes a novel discrete DC-bus voltage sensing technique, which effectively removes the double frequency ripple from the DC-bus voltage signal and prevents it from propagating into the current control loop. A variant on the DC-bus voltage droop control method, called adaptive droop control is proposed, which adaptively changes the droop gains in order to regulate the DC-bus voltage to a constant value. Finally, another variant on the DC-bus voltage droop control method is proposed, called optimized adaptive droop control, which adaptively changes the gains of the controller in order to minimize the overall system power losses. A stability analysis is conducted using the singular perturbation control theory, which allows a nonlinear dynamical system to be broken down into subsystems with different time scales. The results of the stability analysis confirm that the proposed closed-loop grid-connected VSI with an LCL filter is locally stable. / Thesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2013-09-30 13:47:56.337
26

A Standardized Ultrasonography Classification for Channel Catfish Ovarian Development

Novelo, Noel D. 29 July 2014 (has links)
The goal of this dissertation was to develop application of ultrasonography as a decision-making tool in genetic improvement programs for channel catfish Ictalurus punctatus. A literature review on the use of ultrasonography in fish reproduction generated a comprehensive reference data set intended to benefit existing and potential users. It exposed the need for reporting of instrument control settings and standardization of fish handling and imaging procedures. These issues were addressed from the onset of this work by assessing more than 6,300 channel catfish ovaries by use of initial fish handling and imaging procedures developed (2004-2005) at the Louisiana State University Agricultural Center Aquaculture Research Station. The development of a standardized and systematic approach to interpretation of ultrasound images emphasized the interplay of technical and biological aspects of ultrasonography assessments. This showed the importance of the control settings and identified disruptive ultrasound artifacts to avoid for observation of the ovary and oocytes. A preliminary ultrasound imaging classification index for assessing ovarian development during the annual reproductive cycle was developed, used and evaluated. This led to the creation of seven well-defined, standardized ultrasound imaging classifications of channel catfish ovarian development based on the annual cycle. Histology of each ultrasound image in the classification index was included as a Reference Guide to provide insight into the processes observed during ultrasonography. Finally, the ultrasound imaging classification index was used for identification and selection of females for hormone-induced spawning in commercial hatchery production of F1 hybrids (channel catfish female x blue catfish male I. furcatus). In sum, this dissertation provides a systematic method of ultrasound imaging assessment of channel catfish ovarian development enabling progress towards standardization in the use of ultrasonography in fish reproduction.
27

Measuring the Effects of Recycled Water on the Growth of Three Algal Species: Tisochrysis lutea, Chaetcoeros calcitrans, and C. muelleri in a Commercial-Scale Oyster Hatchery

Bourassa, Lisa Marie 14 March 2017 (has links)
Algal production is often the limiting factor in large-scale oyster hatcheries, and constant, reliable production is required to grow enough algae to support all oyster larvae and broodstock grown and conditioned in a hatchery. The algal rooms in the Michael C. Voisin Oyster Hatchery at Grand Isle, LA are temperature-controlled to maintain consistent temperature, but this hatchery is also unique in its ability to recycle natural seawater pumped from the northern Gulf of Mexico. Effects of recycling seawater on algal production in an oyster hatchery, however, are undocumented. In this study, Tisochrysis lutea, Chaetoceros calcitrans and C. muelleri were grown in different water sources to determine if productivity would be affected by water source. Algae were grown in ambient filtered seawater, recycled filtered seawater, and artificial seawater for a period of 10 days. To evaluate algal production, cell concentrations were measured every other day and dry biomass and growth rate were calculated. Water chemistry (nitrate, phosphate, and silicate concentrations) was measured initially and at ten days. Dry weights and growth were significantly different between species (p=0.0475, p<0.0001), but not water sources. C. muelleri grew the greatest in biomass and the slowest growth rate , followed by C. calcitrans, and T. lutea. Nitrate and phosphates had no significant effects on growth between species, although silicate content was significantly higher in T. lutea. Overall there were no statistically significant effects for the interaction of the three water sources on the growth of these algal species over time (p=0.2882). Although there were no significant differences, algae grown in ambient bay water grew denser and greater biomass than those in recycled bay water or artificial seawater.
28

Innovation in China’s Renewable Energy Industry

Lâm, Long Thanh 01 May 2017 (has links)
This dissertation includes three studies that examine the remarkable rise of China’s renewable energy industry and its technological contributions to the global industry. China has emerged as the world’s largest carbon emitter by a large margin, and many of its cities experience high levels of air pollution. The Chinese government has turned to wind – and later solar – as alternative power sources to help decarbonize its electricity system and ameliorate increasingly urgent air pollution problems. Through these efforts, China has markedly expanded the share of renewable energy in its energy mix, and in the process absorbed a fair amount of relatively advanced technology, establishing itself as a competitive location to manufacture clean power equipment. In short order China has bolstered its international standing as a renewable energy powerhouse. The first study evaluates the question of whether China's wind industry has become an important source of clean energy technology innovation. Results indicate that while China has delivered enormous progress in terms of wind capacity, the outcomes were more limited in terms of innovation and cost competitiveness. Chinese wind turbine manufacturers have secured few international patents and achieved moderate learning rates relative to the global industry’s historical learning rate. The success of China’s transition to a low-carbon energy system will be key to achieve the global level of emissions reductions needed to avoid large negative consequences from climate change. The second study shows that China made progress in bringing down the levelized cost of wind electricity and cost of carbon mitigation. However, widespread grid-connection issues and wind curtailment rates caused much higher-than-anticipated costs of renewable energy integration. China has emerged as the global manufacturing center for solar photovoltaic products, and Chinese firms have entered all stages of the supply chain in short order. The third study provides detailed expert assessments of the technological and nontechnological factors that led to the surprised success of China’s silicon photovoltaic industry. Expert judgments suggest that continued declines in in module and system costs and improvements in performance will allow solar photovoltaic to be competitive with fossil fuels in China.
29

Bioassimilation, Burial, and Sediment Denitrification at Shallow-water and Deep-water Oyster Reefs in Two Louisiana Estuaries

Westbrook, Phillip Thomas 30 November 2016 (has links)
The eastern oyster (Crassostrea virginica) and the reefs they create are highly valued for the ecosystem services they provide to coastal estuaries. Recently, their capacity to contribute to nutrient mitigation has spurred interest as researchers have identified 3 mechanisms directly or indirectly associated with oyster reef habitat. This study measured bioassimilation, long-term nutrient burial, and oyster-mediated denitrification in shallow-water (< 1 m water depth) and deep-water (> 1 m water depth) oyster reefs located in two southern Louisiana estuaries. Carbon and nitrogen assimilated into shell and tissue of small (< 75 mm) and large (> 75 mm) oysters was within the range of previous studies but was found to be less influenced by reef type, and more dependent on location specific factors and reproductive status. Post-spawning oysters were found to have higher percent nitrogen content in tissue compared to pre-spawning populations, likely a result of the loss of gametes and increase in feeding related activities during the post-spawn season. Carbon and nitrogen burial rates at oyster reefs ranged from 23.02-57.69 g m-2 yr-1 and 1.09-4.49 g m-2 yr-1 respectively and did not exceed that of other habitat types in Louisiana. However, they were considered to be an important source of nutrient mitigation in these estuaries. Shallow-water reefs buried significantly more nitrogen and carbon, which may be attributed to their proximity to the marsh edge and thus greater influx of detrital material. Closed-system ex-situ incubations revealed some of the highest ever recorded sediment denitrification rates at oyster reefs in the United States (> 1000 µmol m-2 hr-1). However, these values were within the range of those documented in Louisiana coastal systems, and similar to those recorded in nearby reference sediments. Variation in denitrification was found to correspond to site and season, rather than the influence of oyster reef habitat. Because the estuaries in this study are a matrix of reefs and soft bottom sediments, oysters may influence nutrient mitigation outside the boundaries of their active reefs. Thus, bioassimilation, burial, and denitrification may not be localized, but instead may resonate across larger areas as determined by historical reef acreage and hydrodynamics. These are among the first estimates for nutrient mitigation at oyster reefs in Louisiana, and indicate the potential of this ecosystem service in our region. Future research should consider site-specific conditions such as nutrient loading rates, oyster density, and active harvest to accurately quantify this ecosystem service across the coastal region of the state.
30

Modelling and experimental study of PV cells in lens-walled CPC PV system

Zhou, Hang January 2016 (has links)
The concentration photovoltaics (CPV) application promises to produce lower price electricity with less semiconductor usage in comparison with the common flat plate PV module. The compound parabolic concentrator (CPC) shows great potential in both economics and efficiency in low the concentration photovoltaics (LCPV) system because it does not require a tracking system and is able to concentrate light with a large incident angle range. A detailed investigation has previously been carried out regarding the novel CPC module purposed (Su et al., 2012a). The validation of the experiment shows the Lens-Walled CPC gives a superior optical and electrical performance compared with other CPCs. Non-uniform light distribution is a common issue with all CPC designs as it has a major influence on the concentration of solar cell performance. In order to study the effects of non-uniform distributed light on solar cell behavior in-depth, two simulation approaching methods including array modelling and finite element modelling (FEM) were carried out. Both simulation approaches observed a reduction in the solar cell fill factor (FF) under non-uniform distributed light. The high resistive losses in the cell are the main cause of this phenomenon. Three simulation models with different cell grid designs were studied to further study the influence of non-uniform distributed light. The light profiles from three different CPCs were implemented with the FEM model. The result shows although solid CPC has the highest current output in a certain condition, the Lens-Walled CPC has the most uniform light distribution, which reduces the influence from non-uniform light distribution to solar cell performance.

Page generated in 0.0624 seconds