1 |
Regulation of endometrial regeneration : mechanisms contributing to repair and restoration of tissue integrity following mensesCousins, Fiona Lyndsay January 2014 (has links)
The human endometrium is a dynamic, multi-cellular tissue that lines the inside of the uterine cavity. During a woman’s reproductive lifespan the endometrium is subjected to cyclical episodes of proliferation, angiogenesis, differentiation/decidualisation, shedding (menstruation), repair and regeneration in response to fluctuating levels of oestrogen and progesterone secreted by the ovaries. The endometrium displays unparalleled, tightly regulated, tissue remodelling resulting in a healed, scar-free tissue following menses or parturition. Mechanisms responsible for initiation of menses have been well documented: following progesterone withdrawal there is an increase in inflammatory mediators, focal hypoxia and induction and activation of matrix-degrading enzymes. In contrast, the molecular and cellular changes responsible for rapid, regulated, tissue repair at a time when oestrogen and progesterone are low are poorly understood. Histological studies using human menstrual phase endometrium have revealed that tissue destruction and shedding occur in close proximity to re-epithelialisation/repair. It has been proposed that re-epithelialisation involves proliferation of glandular epithelial cells in the remaining basal compartment; there is also evidence for a contribution from the underlying stroma. A role for androgens in the regulation of apoptosis of endometrial stromal cells has been proposed but the impact of androgens on tissue repair has not been investigated. Studies using human xenografts and primates have been used to model some aspects of the impact of progesterone withdrawal but simultaneous shedding (menses) and repair have not been modelled in mice; the species of choice for translational biomedical research. In the course of the studies described in this thesis, the following aims have been addressed: 1. To establish a model of menses in the mouse which mimics menses in women, namely; simultaneous breakdown and repair, overt menstruation, immune cell influx, tissue necrosis and re-epithelialisation. 2. To use this model to determine if the stromal cell compartment contributes to endometrial repair. 3. To examine the impact of androgens on the regulation of menses (shedding) and repair. An informative mouse model of endometrial breakdown that was characterised by overt menses, as well as rapid repair, was developed. Immunohistological evidence for extensive tissue remodelling including active angiogenesis, transient hypoxia, epithelial cell-specific proliferation and re-epithelialisation were obtained by examining uterine tissues recovered during an “early window of breakdown and repair” (4 to 24 hours after progesterone withdrawal). Novel data included identification of stromal cells that expressed epithelial cell markers, close to the luminal surface following endometrial shedding, suggesting a role for mesenchymal to epithelial transition (MET) in re-epithelialisation of the endometrium. In support of this idea, array and qRTPCR analyses revealed dynamic changes in expression of mRNAs encoded by genes known to be involved in MET during the window of breakdown and repair. Roles for hypoxia and tissue-resident macrophages in breakdown and tissue remodelling were identified. Treatment of mice with dihydrotestosterone to mimic concentrations of androgens circulated in women at the time of menses had an impact on the timing and duration of endometrial breakdown. Array analysis revealed altered expression of genes implicated in MET and angiogenesis/inflammation highlighting a potential, previously unrecognised role for androgens in regulation of tissue turnover during menstruation. In summary, using a newly refined mouse model new insights were obtained, implicating androgens and stromal MET in restoration of endometrial tissue homeostasis during menstruation. These findings may inform development of new treatments for disorders associated with aberrant repair such as heavy menstrual bleeding and endometriosis.
|
2 |
Mesenchymal Stem Cell Constructs for Repair of Focal Cartilage Defects in an Ovine ModelSomerson, Jeremy 18 October 2016 (has links)
Focal cartilage defects (FCD) of the knee joint remain a difficult area of treatment for orthopaedic surgeons, as they often progress to generalized osteoarthritis (OA). Osteochondral autograft transfer (OAT) to the damaged cartilage area has shown promise, but this has been associated with pain and bleeding at the site of graft harvest. The use of mesenchymal stem cells (MSCs) in a matrix to regenerate articular cartilage has been proposed. This work describes a prospective case-control series comparing OAT with a novel, MSC-seeded scaffold graft in the stifle joints of healthy merino sheep. The triphasic grafts were composed of a beta-tricalcium phosphate osseous phase, an intermediate activated plasma phase and a collagen I hydrogel cartilage phase.
The osseous and cartilage phases were seeded with autologous MSCs.
All sheep underwent creation of a full-thickness, 4.0 mm diameter FCD (n=20) followed by six weeks of unrestricted activity, allowing the defects to degenerate naturally. At six weeks, half of the lesions were treated with OAT and half with the triphasic engineered grafts.
At 6-month and 12-month follow-up, no significant differences were noted between groups with regard to overall histological scores. Macroscopic and biomechanical analysis at 12 months showed no significant differences between groups. In summary, autologous MSC-seeded implants showed comparable repair quality to OAT without the associated donor site morbidity.
|
3 |
Rôle de l’inflammation dans le remodelage de l’épithélium des voies aériennes humaines mucoviscidosiques et potentiel thérapeutique d’une molécule issue des agro-ressources champenoises. / Involvement of inflammation in human cystic fibrosis airway epithelium remodeling and therapeutic potential of a molecule derived from Champagne-Ardenne agro-resources.Adam, Damien 07 November 2014 (has links)
Chez les patients mucoviscidosiques (CF), l'épithélium des voies aériennes est souvent lésé et remodelé. Que le remodelage soit lié à l'infection et/ou l'inflammation inhérentes à la pathologie ou à un processus de régénération dérégulée reste à déterminer. Le premier objectif de cette thèse a été de déterminer le rôle de l'inflammation dans le remodelage et la régénération de l'épithélium bronchique CF. Grâce à un modèle in vitro de culture en interface air-liquide, nous avons montré qu'en absence d'infection et d'inflammation exogènes, la régénération épithéliale CF est anormale et retardée, et que l'épithélium régénéré est remodelé, en comparaison d'un épithélium régénéré non-CF. En outre, en générant une inflammation chronique dans les cultures CF et non-CF, nous avons pu attribuer un rôle pour l'inflammation endogène (mémoire inflammatoire) des cellules CF dans l'augmentation de la hauteur épithéliale et dans le développement de l'hyperplasie des cellules basales, un rôle essentiel de l'inflammation exogène dans le développement de l'hyperplasie des cellules mucipares, et l'absence d'influence de l'inflammation dans le retard de différenciation des cellules ciliées épithéliales CF. Le second objectif de cette thèse a été d’identifier une molécule susceptible d’être anti-remodelage et/ou pro-régénératrice. Les résultats obtenus montrent qu’une molécule issue des agro-ressources régionales régule l'augmentation de la hauteur épithéliale et l'hyperplasie des cellules basales et sécrétoires, favorise la différenciation des cellules ciliées, et réduit l'inflammation et de synthèse de la mucine MUC-5AC, tant dans les cultures CF quand dans les cultures non-CF soumises à une inflammation chronique. Enfin, la molécule restaure la sécrétion des ions chlorure CFTR-dépendante dans les cultures CF. Cette molécule semble donc être un candidat médicament prometteur pour le traitement de la CF. / The airway epithelium of cystic fibrosis (CF) patients is frequently injured and remodeled. Whether these alterations are related to infection and/or inflammation or to a dysregulated regeneration process remains to be elucidated. The first objective of this study was to determine the involvement of inflammation in remodeling and regeneration of the CF airway epithelium. Using an in vitro model of airway epithelial cell culture at the air-liquid interface, we demonstrated that, in absence of exogenous infection and inflammation, the CF airway epithelium regeneration was abnormal, delayed, and led to the reconstitution of a remodeled epithelium, in comparison to a non-CF regenerated airway epithelium. Moreover, by inducing a chronic inflammation in non-CF and CF cultures, we were able to attribute a role of the endogenous inflammation of CF cells (inflammatory memory) in the airway epithelium height increase as well as in the basal cell hyperplasia development, an essential involvement of exogenous inflammation in the development of goblet cell hyperplasia, and the absence of implication of inflammation in the ciliated cell differentiation delay. The second objective of this study was to identify an anti-remodeling and/or pro-regenerative molecule. The results we obtained showed that a molecule derived agro-resources regulated the increase in the airway epithelium height as well as the basal and goblet cell hyperplasia development, favored the ciliated cell differentiation, decreased the inflammation and the production of the MUC5-AC mucin, in the CF cultures an in the chronically inflamed non-CF cultures. Finally, this molecule restored chloride secretion through CFTR in CF cultures. In conclusion, the chosen molecule seems to be a promising therapeutics for cystic fibrosis.
|
Page generated in 0.113 seconds