• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a reporter system for the study of gene expression for solvent production in Clostridium beijerinckii NRRL B592 and Clostridium acetobutylicum ATCC 824

Li, Guang-Shan 11 December 1998 (has links)
To study the regulation of gene expression, a good reporter system is very useful. The lack of a good reporter system for the solvent-producing clostridia hindered the progress of research in this area. The objective of this study was to develop a reporter system to facilitate the elucidation of the control mechanism for the expression of solvent-producing genes. A potential reporter gene was found in Clostridium beijerinckii NRRL B593, which contains an adh gene encoding a primary-secondary alcohol dehydrogenase and this adh gene is not present in Clostridium acetobutylicum ATCC 824 and Clostridium beijerinckii NRRL B592. The adh gene was cloned into the E. coli -Clostridium shuttle vectors to generate plasmids. An electro-transformation procedure was developed for C. beijerinckii NRRL B592. Shuttle plasmids were transformed into C. beijerinckii NRRL B592 or C. acetobutylicum ATCC 824. The copy number of the plasmids in C. beijerinckii was 4. Isopropanol production suggested that the adh gene was expressed in transformants of C. acetobutylicum ATCC 824 and C. beijerinckii NRRL B592. Northern analysis indicated that the expression of the adh gene was regulated at the transcriptional level in the transformants of C. beijerinckii. The transcriptional start site for the adh gene was identified by the primer extension method. A promoter-probing vector was constructed and tested with the promoter from the ferredoxin(fer) gene. The expression of the adh gene under the control of the fer promoter was at a low and similar level during acidogenesis and solventogenesis. The expression pattern of the adh gene under the control of the promoter of the adh gene differed from that under the control of the promoter of the fer gene. / Ph. D.
2

The Development of Luciferase Reporters for the Optimization of CRISPR Interference Gene Silencing of Mycobacterial L,D-Transpeptidases

Castellano, Isabella 01 January 2021 (has links)
Mycobacterial species are diverse organisms, classified into tuberculous and nontuberculous mycobacteria (NTM). Mycobacterium tuberculosis has been thoroughly investigated, but pathogenic NTM have not. The identified technology gap for studying potential antibiotic targets across mycobacteria is that there is not a tool developed for efficiently creating bacterial clones containing these genes with a reporter system to evaluate CRISPR interference (CRi) knockdowns. CRi is a quick and simple way to silence genes. In this study, Golden Gate (GG) cloning compatible Lux reporter plasmids were engineered for the efficient cloning of target genes as transcriptional fusions with luxAB, a luminescent reporter, for use with CRi. Additionally, a CRi plasmid was designed with a Giles integration site so that it could be integrated into the mycobacterial genome with the reporter plasmid, but at a different location. Based on current research, it seems that mycobacterial L,D-transpeptidase enzymes (Ldts), involved in peptidoglycan synthesis, are potential targets for the drug class known as β-lactams and should be further explored. Ldt 2 is of particular interest as research indicates that it may be involved in pathogenicity; therefore, GG cloning of M. smegmatis (Msm) Ldt 2 was performed using the designed GG plasmid. Constructing the GG plasmid (pMV306hsp+luxG13, GG pMV) as well as the CRi + Giles integration plasmid (pLJR962 + pML1357, CRi + Giles) was successful; however, the evaluation of the luminescent reporter with CRi knockdown has yet to be performed.
3

Useful Bicistronic Reporter System for Studying Poly(A) Site-Defining cis Elements and Regulation of Alternative Polyadenylation

Deng, Zhongyuan, Zhang, Shen, Gu, Shaohua, Ni, Xinzhi, Zeng, Wenxian, Li, Xianchun 17 January 2018 (has links)
The link between polyadenylation (pA) and various biological, behavioral, and pathological events of eukaryotes underlines the need to develop in vivo polyadenylation assay methods for characterization of the cis-acting elements, trans-acting factors and environmental stimuli that affect polyadenylation efficiency and/or relative usage of two alternative polyadenylation (APA) sites. The current protein-based CAT or luciferase reporter systems can measure the polyadenylation efficiency of a single pA site or candidate cis element but not the choice of two APA sites. To address this issue, we developed a set of four new bicistronic reporter vectors that harbor either two luciferase or fluorescence protein open reading frames connected with one Internal Ribosome Entry Site (IRES). Transfection of single or dual insertion constructs of these vectors into mammalian cells demonstrated that they could be utilized not only to quantify the strength of a single candidate pA site or cis element, but also to accurately measure the relative usage of two APA sites at both the mRNA (qRT-PCR) and protein levels. This represents the first reporter system that can study polyadenylation efficiency of a single pA site or element and regulation of two APA sites at both the mRNA and protein levels.
4

Investigation of Microbial Aspects Related to Salmonella as a Food Pathogen Bioluminescent Reporting System and Mechanisms for Host Invasion

Howe, Kevin 14 August 2015 (has links)
Salmonella can reside in healthy animals without the manifestation of any adverse effects on the carrier. If raw products of animal origin are not handled properly during processing or cooked to a proper temperature during preparation, salmonellosis can occur. In this research, microbial aspects related to Salmonella as a food pathogen are investigated. A bioluminescent reporting system was developed for Salmonella to monitor the attachment and growth of the pathogen on food products. Twelve and eleven Salmonella strains from the broiler production continuum were tagged with bioluminescence by plasmid and integration of the lux operon into the chromosome, respectively. To assess the usefulness of bioluminescent Salmonella strains in food safety studies, an attachment model using chicken skin was developed. Variables including washing and temperature were tested in the attachment model to determine the effects on attachment of Salmonella strains to chicken skin, a characteristic that enhances persistence during processing. Additionally, the invasion process for two serovars of Salmonella with differing host tropism was examined with emphasis on the initial establishment of the bacterium in the host. The major facilitator for invasion, type III secretion system, was inactivated through deletion mutation to evaluate invasion of human epithelial cell line by additional means. The difference in host tropism between the two subspecies of Salmonella was also taken into account when evaluating invasion. Results showed that invasion of human epithelial cells can be initiated despite inactivation of the type III secretion system. A serovar of Salmonella that is not typically associated with human illness was also shown to initiate invasion of human epithelial cells, a result that carries public health implication as this serovar has recently been shown to be multi-drug resistant.
5

Development of an alkaline phosphatase reporter system for use in the lyme disease spirochete borrelia burgdorferi

Sutchu, Selina 01 January 2013 (has links)
The use of the periplasmic alkaline phosphatase (PhoA) reporter protein from E. coli has been critical for definition of the topology of transmembrane proteins of multiple bacterial species. This report demonstrates development of a PhoA reporter system in B. burgdorferi. Codon usage of the E. coli phoA in B. burgdorferi was analyzed and an optimized version of the gene was obtained. In order to assess the differential activity of the reporter system, two optimized PhoA-fusion construct using B. burgdorferi proteins were engineered: one using the periplasmic protein OppAIV and one using the cytoplasmic protein PncA. The activity of PhoA requires periplasmic localization. The periplasmic OppAIV-PhoA fusion as well as the cytoplasmic PncA-PhoA fusion produced detectable PhoA protein in E. coli and in B. burgdorferi. The periplasmic fusion construct, but not the cytoplasmic fusion construct, resulted in functional alkaline phosphatase (AP) activity in E. coli, as observed by blue colonies on agar plates containing a chromogenic substrate for AP. In contrast, both of the fusion constructs produced limited detectable levels of functional alkaline phosphatase activity in B. burgdorferi, as observed by yellow color change in liquid protein lysate containing a chromogenic substrate for AP. Development of a PhoA fusion reporter system for use in B. burgdorferi will provide a new molecular genetics tool for analyzing the topology of B. burgdorferi transmembrane proteins. These types of studies are critical for understanding the function of B. burgdorferi transport systems and may identify novel molecular approaches for the treatment of Lyme disease.
6

Differential functions of Interleukin-10 derived from different cell types in the regulation of immune responses

Surianarayanan, Sangeetha 10 January 2012 (has links) (PDF)
Interleukin-10 (IL-10) is an important regulator of immune responses secreted by different cell types. Previous results from our group suggested that the biological effects of this cytokine critically depend on its cellular source. Recent studies reported IL-10 dependent immunosuppressive functions of a specialized subset of regulatory B cells and mast cells. These results relied on adoptive cell transfers, a technique which can potentially introduce artifacts. Therefore, we aimed to readdress these questions in independent models using IL-10 transcriptional reporter mice and various conditional IL-10 mutant mice. Findings in IL-10 reporter system suggested prominent IL-10 transcription in regulatory B cells upon LPS administration. Exposure of mice to contact allergen revealed robust reporter expression in CD8 T cells, moderate to mild reporter expression in CD4 T cells and dendritic cells (DC) respectively, and lack of reporter expression in B cells, mast cells and NK cells in allergen challenged ears. We generated cell-type specific IL-10 mutants by Cre/LoxP-mediated conditional gene inactivation. Efficiency and specificity of Cre-mediated recombination was demonstrated by Southern blot and PCR methods. Various immunogenic challenges in conditional IL-10 mutants did not reveal a role for B cell-derived IL-10 in restraining innate TLR or T cell-dependent inflammatory responses. Likewise, mice with selective inactivation of the il10 gene in mast cells exhibited normal CHS responses and unaltered immune response to CpG oligodeoxynucleotides. On the other hand, DC-specific IL-10 mutants developed excessive inflammatory responses to contact allergens, while innate responses to TLR ligands were not altered. This indicates a non-redundant role for DC-derived IL-10 in contact allergy. Thus, the conditional IL-10 ‘‘knockout’’ mice combined with the novel transcriptional IL-10 reporter system can serve as ideal tools to understand the cell-type specific contributions to IL-10-mediated immune regulation.
7

Differential functions of Interleukin-10 derived from different cell types in the regulation of immune responses

Surianarayanan, Sangeetha 16 December 2011 (has links)
Interleukin-10 (IL-10) is an important regulator of immune responses secreted by different cell types. Previous results from our group suggested that the biological effects of this cytokine critically depend on its cellular source. Recent studies reported IL-10 dependent immunosuppressive functions of a specialized subset of regulatory B cells and mast cells. These results relied on adoptive cell transfers, a technique which can potentially introduce artifacts. Therefore, we aimed to readdress these questions in independent models using IL-10 transcriptional reporter mice and various conditional IL-10 mutant mice. Findings in IL-10 reporter system suggested prominent IL-10 transcription in regulatory B cells upon LPS administration. Exposure of mice to contact allergen revealed robust reporter expression in CD8 T cells, moderate to mild reporter expression in CD4 T cells and dendritic cells (DC) respectively, and lack of reporter expression in B cells, mast cells and NK cells in allergen challenged ears. We generated cell-type specific IL-10 mutants by Cre/LoxP-mediated conditional gene inactivation. Efficiency and specificity of Cre-mediated recombination was demonstrated by Southern blot and PCR methods. Various immunogenic challenges in conditional IL-10 mutants did not reveal a role for B cell-derived IL-10 in restraining innate TLR or T cell-dependent inflammatory responses. Likewise, mice with selective inactivation of the il10 gene in mast cells exhibited normal CHS responses and unaltered immune response to CpG oligodeoxynucleotides. On the other hand, DC-specific IL-10 mutants developed excessive inflammatory responses to contact allergens, while innate responses to TLR ligands were not altered. This indicates a non-redundant role for DC-derived IL-10 in contact allergy. Thus, the conditional IL-10 ‘‘knockout’’ mice combined with the novel transcriptional IL-10 reporter system can serve as ideal tools to understand the cell-type specific contributions to IL-10-mediated immune regulation.
8

Role proteinu BopN v sekrečním aparátu typu III u bakterií rodu Bordetellae / BopN function in the Bordetella type III secretion system

Kincová, Veronika January 2018 (has links)
Species of the Bordetella genus cause the highly contagious whooping cough disease in humans (B. pertussis, B. parapertussis) and related respiratory diseases in other mammals (B. bronchiseptica, B. parapertussis). One of the virulence systems of Bordetellae is the type III secretion system (T3SS) employed for translocation of effector proteins directly from bacterial cytosol into the cytosol of host cells. The T3SS protein BopN protein has been categorized as a Bordetella effector protein. Nevertheless, the homologous proteins in other gram-negative bacteria function in establishing the secretion hierarchy through T3SS and some of them block T3SS secretion in high calcium environments before bacteria-host cell contact has been established. In this thesis I examined the function of the BopN protein and the role of calcium ions in T3SS activity of B. bronchiseptica. Two independent methods have been used for determination of T3SS secretion activity. Addition of 2 mM calcium ions into bacterial media decreased secretion of the T3SS reporter, while no such effect was observed in a B. bronchiseptica strain lacking the bopN gene. Mass spectrometry data confirmed the inhibition of T3SS activity in the presence of calcium ions. Enhanced calcium levels resulted in decreased mobilization and secretion of...

Page generated in 0.0485 seconds