• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quelques apects géométriques et dynamiques du mapping class group

Fehrenbach, Jérôme 08 January 1998 (has links) (PDF)
Dans le premier chapitre de ce travail, nous rappelons la théorie des représentants efficaces d'un élément pseudo-Anosov du mapping class group d'une surface S compacte orientée munie de n+1 points marqués. Ces objets ont été introduits par Bestvina-Handel et Los.<br /><br />Le deuxième chapitre contient l'exposé de la théorie des bons représentants et des représentants super efficaces d'un homéomorphisme pseudo-Anosov f fixant le point marqué x_0. Nous montrons ensuite un résultat de structure sur l'ensemble des représentants super efficaces : cet ensemble est une union d'un nombre fini de cycles qui sont parcourus en appliquant des opérations combinatoires. Nous en déduisons des algorithmes permettant de décider si l'homéomorphisme f - ou, ce qui est équivalent, sa classe d'isotopie - admet une racine fixant x_0, ou commute avec un élément d'ordre fini fixant x_0. Nous en déduisons également une nouvelle solution au problème de conjugaison parmi les éléments pseudo-Anosov du mapping class group qui fixent x_0.<br /><br />Dans le troisième chapitre, nous considérons un homéomorphisme f du disque et O une orbite de période n>=3 pour f. Nous donnons une minoration de l'entropie topologique des homéomorphismes isotopes à f relativement à O. Cette minoration est obtenue à l'aide de la théorie des représentants efficaces.<br /><br />Dans le quatrième chapitre, nous donnons des conditions nécessaires et suffisantes pour qu'une tresse beta à n brins admette une déstabilisation ou un mouvement d'échange. Ces conditions sont des propriétés sur l'élément du mapping class group induit par la tresse beta.

Page generated in 0.0796 seconds