• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análise de redes metabólicas em Saccharomyces cerevisiae. / Metabolic network analysis of Saccharomyces cerevisiae.

Gombert, Andreas Karoly 17 May 2001 (has links)
Análise de Redes Metabólicas foi aplicada à cepa de Saccharomyces cerevisiae CEN.PK113-7D, e a alguns mutantes interrompidos em genes que codificam para proteínas regulatórias envolvidas no fenômeno de repressão por glicose. Todas as cepas foram cultivadas em aerobiose, em meio mínimo contendo [1-13C]glicose como substrato limitante. As células eram recolhidas em situação de crescimento balanceado e submetidas à hidrólise, seguida de derivação e posterior injeção da amostra resultante num cromatógrafo gasoso acoplado a um espectrômetro de massa, para análise da marcação em alguns fragmentos de metabólitos intracelulares. Estes dados serviram como base para a identificação da atividade de algumas vias metabólicas no metabolismo central de S. cerevisiae. Além disto, utilizando-os juntamente com um modelo estequiométrico, foi possível obter uma estimativa para os fluxos no metabolismo central na cepa referência e nos mutantes estudados. Num primeiro momento, a metodologia foi validada para cultivos contínuos e descontínuos. Calculou-se um desvio padrão para a medida da marcação em cada fragmento de metabólito detectado pela metodologia empregada. Na cepa referência, observou-se que o ciclo de Krebs opera de forma cíclica em células que respiram e de forma não cíclica em células que apresentam metabolismo respiratório-fermentativo. Verificou-se que uma maior parte da glicose consumida é desviada para a via das pentoses fosfato no primeiro caso, em relação ao segundo. Foram encontradas evidências para a biossíntese de glicina através da enzima treonina aldolase e para a atividade da enzima málica. A ausência das proteínas Mig1 e Mig2 não altera os padrões de crescimento, produção de etanol e de marcação em metabólitos intracelulares de S. cerevisiae. Já a ausência de Hxk2, Reg1 ou Grr1 provoca alívio na repressão por glicose, observado pelo aumento das atividades respiratórias. / Metabolic Network Analysis was applied to the reference strain CEN.PK113-7D of Saccharomyces cerevisiae, as well as to some mutants disrupted in genes which code for regulatory proteins involved in the glucose repression cascade. All strains were cultivated under aerobic conditions, using minimal medium with [1-13C]glucose as the limiting substrate. Cells were harvested under balanced growth conditions and submitted to hydrolysis, derivatization and injection of the sample into a gas chromatograph coupled to a mass spectrometer for analysis of the labeling pattern in some fragments of intracellular metabolites. These data were used for identifying the activity of some pathways in the central metabolism of S. cerevisiae. Furthermore, using the data together with a stoichiometric model, it was possible to estimate the fluxes in the central metabolism of the reference strain and in the mutant strains. First, the methodology was validated for batch and continuous cultivations. Standard deviations were calculated for the measurement of the fractional labeling in each of the detected fragments. In the reference strain, it was observed that the Krebs cycle operates in a cyclic manner in respiratory cells, whereas it operates in a non cyclic manner under respiro-fermentative metabolism. It was also seen that a greater part of the glucose consumed by the cells enters the pentose phosphate pathway in the former than in the later case. Evidence for the activity of the threonine aldolase and the malic enzyme catalyzed reactions was also found. The absence of the Mig1 and Mig2 proteins does not alter the growth, ethanol formation and labeling pattern of intracellular metabolites in S. cerevisiae. In contrast, the absence of Hxk2, Reg1, or Grr1 provoques a relief in glucose repression, which was observed by an increased respiratory activity.
2

Análise de redes metabólicas em Saccharomyces cerevisiae. / Metabolic network analysis of Saccharomyces cerevisiae.

Andreas Karoly Gombert 17 May 2001 (has links)
Análise de Redes Metabólicas foi aplicada à cepa de Saccharomyces cerevisiae CEN.PK113-7D, e a alguns mutantes interrompidos em genes que codificam para proteínas regulatórias envolvidas no fenômeno de repressão por glicose. Todas as cepas foram cultivadas em aerobiose, em meio mínimo contendo [1-13C]glicose como substrato limitante. As células eram recolhidas em situação de crescimento balanceado e submetidas à hidrólise, seguida de derivação e posterior injeção da amostra resultante num cromatógrafo gasoso acoplado a um espectrômetro de massa, para análise da marcação em alguns fragmentos de metabólitos intracelulares. Estes dados serviram como base para a identificação da atividade de algumas vias metabólicas no metabolismo central de S. cerevisiae. Além disto, utilizando-os juntamente com um modelo estequiométrico, foi possível obter uma estimativa para os fluxos no metabolismo central na cepa referência e nos mutantes estudados. Num primeiro momento, a metodologia foi validada para cultivos contínuos e descontínuos. Calculou-se um desvio padrão para a medida da marcação em cada fragmento de metabólito detectado pela metodologia empregada. Na cepa referência, observou-se que o ciclo de Krebs opera de forma cíclica em células que respiram e de forma não cíclica em células que apresentam metabolismo respiratório-fermentativo. Verificou-se que uma maior parte da glicose consumida é desviada para a via das pentoses fosfato no primeiro caso, em relação ao segundo. Foram encontradas evidências para a biossíntese de glicina através da enzima treonina aldolase e para a atividade da enzima málica. A ausência das proteínas Mig1 e Mig2 não altera os padrões de crescimento, produção de etanol e de marcação em metabólitos intracelulares de S. cerevisiae. Já a ausência de Hxk2, Reg1 ou Grr1 provoca alívio na repressão por glicose, observado pelo aumento das atividades respiratórias. / Metabolic Network Analysis was applied to the reference strain CEN.PK113-7D of Saccharomyces cerevisiae, as well as to some mutants disrupted in genes which code for regulatory proteins involved in the glucose repression cascade. All strains were cultivated under aerobic conditions, using minimal medium with [1-13C]glucose as the limiting substrate. Cells were harvested under balanced growth conditions and submitted to hydrolysis, derivatization and injection of the sample into a gas chromatograph coupled to a mass spectrometer for analysis of the labeling pattern in some fragments of intracellular metabolites. These data were used for identifying the activity of some pathways in the central metabolism of S. cerevisiae. Furthermore, using the data together with a stoichiometric model, it was possible to estimate the fluxes in the central metabolism of the reference strain and in the mutant strains. First, the methodology was validated for batch and continuous cultivations. Standard deviations were calculated for the measurement of the fractional labeling in each of the detected fragments. In the reference strain, it was observed that the Krebs cycle operates in a cyclic manner in respiratory cells, whereas it operates in a non cyclic manner under respiro-fermentative metabolism. It was also seen that a greater part of the glucose consumed by the cells enters the pentose phosphate pathway in the former than in the later case. Evidence for the activity of the threonine aldolase and the malic enzyme catalyzed reactions was also found. The absence of the Mig1 and Mig2 proteins does not alter the growth, ethanol formation and labeling pattern of intracellular metabolites in S. cerevisiae. In contrast, the absence of Hxk2, Reg1, or Grr1 provoques a relief in glucose repression, which was observed by an increased respiratory activity.
3

Regulação transcricional por glicose do promotor do gene que codifica celobiohidrolase I de Trichoderma reesei em Saccharomyces cerevisiae / Transcriptional regulation by glucose of the promoter of the gene encoding cellobiohydrolase I from Trichoderma reesei in Saccharomyces cerevisiae

Dirce Maria Carraro Pereira 11 May 1998 (has links)
O sistema celulolítico do fungo filamentoso Trichoderma reesei é induzido transcricionalmente em pelo menos 1000 vezes pelo crescimento do fungo na presença de celulose e fortemente reprimido por glicose. Usando a abordagem de deleção no promotor, determinou-se que a região localizada entre -241 e -72 bp, em relação ao TATA box, denominada UARcb1, é responsável pela transcrição estimulada por celulose da enzima celobiohidrolase I (cbhl). Neste trabalho mostramos que essa região controla a transcrição de um gene repórter, sofrendo repressão por glicose, em Saccharomyces cerevisiae, um microrganismo que não possui os genes necessários para a utilização de celulose. A transcrição mediada por UARcbl, que é controlada por glicose, requer o produto do gene SNFl, uma proteína quinase, e dois repressores: SSN6 e TUP1, cujos papéis no controle de genes reprimidos por glicose, na levedura, são bem estabelecidos. Nossos resultados indicam um mecanismo conservado de controle por glicose em microrganismos eucarióticos. / The cellulotic system of the filamentous fungus Trichoderma reesei is transcriptionally induced 1000 -fold in presence of cellulose and is strongly repressed by glucose. Using the promoter deletion approach, the upstream activating region (UARcbl) responsible for cellulose-stimulated transcription of the major member of the cellulase system, cellobiohydrolase I, was localized between -241 and -72 relative to the TATA box. In this work we show that this region controls transcription and mediates glucose repression of a reporter gene in Saccharomyces cerevisiae, a unicellular microorganism that lacks the genes required for the utilization of cellulose. Glucose-controlled transcription mediated by the UARcbl requires the product of SNF1 gene, a protein kinase, and two repressors SSN6 and TUP1, which are well estalished in controlling glucose-represible yeast genes. Our results indicate a conserved mechanism of glucose control in eukariotic microorganisms.
4

Regulação transcricional por glicose do promotor do gene que codifica celobiohidrolase I de Trichoderma reesei em Saccharomyces cerevisiae / Transcriptional regulation by glucose of the promoter of the gene encoding cellobiohydrolase I from Trichoderma reesei in Saccharomyces cerevisiae

Pereira, Dirce Maria Carraro 11 May 1998 (has links)
O sistema celulolítico do fungo filamentoso Trichoderma reesei é induzido transcricionalmente em pelo menos 1000 vezes pelo crescimento do fungo na presença de celulose e fortemente reprimido por glicose. Usando a abordagem de deleção no promotor, determinou-se que a região localizada entre -241 e -72 bp, em relação ao TATA box, denominada UARcb1, é responsável pela transcrição estimulada por celulose da enzima celobiohidrolase I (cbhl). Neste trabalho mostramos que essa região controla a transcrição de um gene repórter, sofrendo repressão por glicose, em Saccharomyces cerevisiae, um microrganismo que não possui os genes necessários para a utilização de celulose. A transcrição mediada por UARcbl, que é controlada por glicose, requer o produto do gene SNFl, uma proteína quinase, e dois repressores: SSN6 e TUP1, cujos papéis no controle de genes reprimidos por glicose, na levedura, são bem estabelecidos. Nossos resultados indicam um mecanismo conservado de controle por glicose em microrganismos eucarióticos. / The cellulotic system of the filamentous fungus Trichoderma reesei is transcriptionally induced 1000 -fold in presence of cellulose and is strongly repressed by glucose. Using the promoter deletion approach, the upstream activating region (UARcbl) responsible for cellulose-stimulated transcription of the major member of the cellulase system, cellobiohydrolase I, was localized between -241 and -72 relative to the TATA box. In this work we show that this region controls transcription and mediates glucose repression of a reporter gene in Saccharomyces cerevisiae, a unicellular microorganism that lacks the genes required for the utilization of cellulose. Glucose-controlled transcription mediated by the UARcbl requires the product of SNF1 gene, a protein kinase, and two repressors SSN6 and TUP1, which are well estalished in controlling glucose-represible yeast genes. Our results indicate a conserved mechanism of glucose control in eukariotic microorganisms.

Page generated in 0.0667 seconds