• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of Ubiquitin/Proteasome-Dependent Regulation of Hap2/3/4/5 Complex In Saccharomyces cerevisiae

Hunter, Arielle Ruth 01 May 2012 (has links)
The Hap2/3/4/5 complex is a heme-activated, CCAATT binding, global transcriptional activator of genes involved in respiration and mitochondrial biogenesis in the yeast species Saccharomyces cerevisiae. Hap4 is the regulatory subunit of the complex and its levelsdetermine the activity of the complex. Hap4 is known to play a signaling role in response toenvironmental conditions; however, little is known about the regulation of Hap4 levels or how it responses to a cell’s functional state. The activity of the Hap2-5 complex is known to be reduced in respiratory-deficient cells. In Liu Lab, it has previously been found that a link between Hap4 stability, mediated through 26S proteasome-dependent degradation, and dependence on mitochondrial functional state plays a regulatory role on downstream targets of the Hap complex. However, the mechanism behind this regulation is still largely unknown. In normally functioning yeast cells, Hap4 is a highly unstable protein with a half-life of ~10 min. We have observed that loss of mitochondrial DNA in respiratory deficient rho 0 cells has a role in the further destabilization of Hap4 to a half-life of ~4 min through the ubiquitin-proteasome pathway. Through the screening of a collection of mutants defective in E2 ubiquitin-conjugating enzymes, we show that Hap4 is greatly stabilized in ubc1Δubc4Δ double mutant cells. We also show that Hap4 stabilization in the ubc1Δubc4Δ mutant leads to increased activity of the Hap2-5 complex, indicating that mitochondrial biogenesis in yeast is regulated by the functional state of mitochondria through ubiquitin/proteasome-dependent degradation of Hap4. Furthermore, studies on Hap4 mutants involving two highly conserved cysteine residues led to a proposed mechanism behind the regulation of Ubc4 activity towards Hap4 in response to changes in the cellular redox state.
2

Análise de redes metabólicas em Saccharomyces cerevisiae. / Metabolic network analysis of Saccharomyces cerevisiae.

Gombert, Andreas Karoly 17 May 2001 (has links)
Análise de Redes Metabólicas foi aplicada à cepa de Saccharomyces cerevisiae CEN.PK113-7D, e a alguns mutantes interrompidos em genes que codificam para proteínas regulatórias envolvidas no fenômeno de repressão por glicose. Todas as cepas foram cultivadas em aerobiose, em meio mínimo contendo [1-13C]glicose como substrato limitante. As células eram recolhidas em situação de crescimento balanceado e submetidas à hidrólise, seguida de derivação e posterior injeção da amostra resultante num cromatógrafo gasoso acoplado a um espectrômetro de massa, para análise da marcação em alguns fragmentos de metabólitos intracelulares. Estes dados serviram como base para a identificação da atividade de algumas vias metabólicas no metabolismo central de S. cerevisiae. Além disto, utilizando-os juntamente com um modelo estequiométrico, foi possível obter uma estimativa para os fluxos no metabolismo central na cepa referência e nos mutantes estudados. Num primeiro momento, a metodologia foi validada para cultivos contínuos e descontínuos. Calculou-se um desvio padrão para a medida da marcação em cada fragmento de metabólito detectado pela metodologia empregada. Na cepa referência, observou-se que o ciclo de Krebs opera de forma cíclica em células que respiram e de forma não cíclica em células que apresentam metabolismo respiratório-fermentativo. Verificou-se que uma maior parte da glicose consumida é desviada para a via das pentoses fosfato no primeiro caso, em relação ao segundo. Foram encontradas evidências para a biossíntese de glicina através da enzima treonina aldolase e para a atividade da enzima málica. A ausência das proteínas Mig1 e Mig2 não altera os padrões de crescimento, produção de etanol e de marcação em metabólitos intracelulares de S. cerevisiae. Já a ausência de Hxk2, Reg1 ou Grr1 provoca alívio na repressão por glicose, observado pelo aumento das atividades respiratórias. / Metabolic Network Analysis was applied to the reference strain CEN.PK113-7D of Saccharomyces cerevisiae, as well as to some mutants disrupted in genes which code for regulatory proteins involved in the glucose repression cascade. All strains were cultivated under aerobic conditions, using minimal medium with [1-13C]glucose as the limiting substrate. Cells were harvested under balanced growth conditions and submitted to hydrolysis, derivatization and injection of the sample into a gas chromatograph coupled to a mass spectrometer for analysis of the labeling pattern in some fragments of intracellular metabolites. These data were used for identifying the activity of some pathways in the central metabolism of S. cerevisiae. Furthermore, using the data together with a stoichiometric model, it was possible to estimate the fluxes in the central metabolism of the reference strain and in the mutant strains. First, the methodology was validated for batch and continuous cultivations. Standard deviations were calculated for the measurement of the fractional labeling in each of the detected fragments. In the reference strain, it was observed that the Krebs cycle operates in a cyclic manner in respiratory cells, whereas it operates in a non cyclic manner under respiro-fermentative metabolism. It was also seen that a greater part of the glucose consumed by the cells enters the pentose phosphate pathway in the former than in the later case. Evidence for the activity of the threonine aldolase and the malic enzyme catalyzed reactions was also found. The absence of the Mig1 and Mig2 proteins does not alter the growth, ethanol formation and labeling pattern of intracellular metabolites in S. cerevisiae. In contrast, the absence of Hxk2, Reg1, or Grr1 provoques a relief in glucose repression, which was observed by an increased respiratory activity.
3

Análise de redes metabólicas em Saccharomyces cerevisiae. / Metabolic network analysis of Saccharomyces cerevisiae.

Andreas Karoly Gombert 17 May 2001 (has links)
Análise de Redes Metabólicas foi aplicada à cepa de Saccharomyces cerevisiae CEN.PK113-7D, e a alguns mutantes interrompidos em genes que codificam para proteínas regulatórias envolvidas no fenômeno de repressão por glicose. Todas as cepas foram cultivadas em aerobiose, em meio mínimo contendo [1-13C]glicose como substrato limitante. As células eram recolhidas em situação de crescimento balanceado e submetidas à hidrólise, seguida de derivação e posterior injeção da amostra resultante num cromatógrafo gasoso acoplado a um espectrômetro de massa, para análise da marcação em alguns fragmentos de metabólitos intracelulares. Estes dados serviram como base para a identificação da atividade de algumas vias metabólicas no metabolismo central de S. cerevisiae. Além disto, utilizando-os juntamente com um modelo estequiométrico, foi possível obter uma estimativa para os fluxos no metabolismo central na cepa referência e nos mutantes estudados. Num primeiro momento, a metodologia foi validada para cultivos contínuos e descontínuos. Calculou-se um desvio padrão para a medida da marcação em cada fragmento de metabólito detectado pela metodologia empregada. Na cepa referência, observou-se que o ciclo de Krebs opera de forma cíclica em células que respiram e de forma não cíclica em células que apresentam metabolismo respiratório-fermentativo. Verificou-se que uma maior parte da glicose consumida é desviada para a via das pentoses fosfato no primeiro caso, em relação ao segundo. Foram encontradas evidências para a biossíntese de glicina através da enzima treonina aldolase e para a atividade da enzima málica. A ausência das proteínas Mig1 e Mig2 não altera os padrões de crescimento, produção de etanol e de marcação em metabólitos intracelulares de S. cerevisiae. Já a ausência de Hxk2, Reg1 ou Grr1 provoca alívio na repressão por glicose, observado pelo aumento das atividades respiratórias. / Metabolic Network Analysis was applied to the reference strain CEN.PK113-7D of Saccharomyces cerevisiae, as well as to some mutants disrupted in genes which code for regulatory proteins involved in the glucose repression cascade. All strains were cultivated under aerobic conditions, using minimal medium with [1-13C]glucose as the limiting substrate. Cells were harvested under balanced growth conditions and submitted to hydrolysis, derivatization and injection of the sample into a gas chromatograph coupled to a mass spectrometer for analysis of the labeling pattern in some fragments of intracellular metabolites. These data were used for identifying the activity of some pathways in the central metabolism of S. cerevisiae. Furthermore, using the data together with a stoichiometric model, it was possible to estimate the fluxes in the central metabolism of the reference strain and in the mutant strains. First, the methodology was validated for batch and continuous cultivations. Standard deviations were calculated for the measurement of the fractional labeling in each of the detected fragments. In the reference strain, it was observed that the Krebs cycle operates in a cyclic manner in respiratory cells, whereas it operates in a non cyclic manner under respiro-fermentative metabolism. It was also seen that a greater part of the glucose consumed by the cells enters the pentose phosphate pathway in the former than in the later case. Evidence for the activity of the threonine aldolase and the malic enzyme catalyzed reactions was also found. The absence of the Mig1 and Mig2 proteins does not alter the growth, ethanol formation and labeling pattern of intracellular metabolites in S. cerevisiae. In contrast, the absence of Hxk2, Reg1, or Grr1 provoques a relief in glucose repression, which was observed by an increased respiratory activity.
4

Studies of Budding Yeast Transcription Factors Acting Downstream of Nutrient Signaling Pathways

Nordberg, Niklas January 2012 (has links)
Being able to respond to extracellular cues such as nutrients and growth factors is of vital importance to all living cells. Pathways have therefore evolved which can sense the extracellular status, transmit a signal through the cell and affect gene expression, which ultimately enables adaptation. Intriguingly, research has revealed that such signaling pathways responding to nutrient status are intrinsically linked to the lifespan of organisms, a phenomenon known as caloric restriction. This thesis utilizes budding yeast, Saccharomyces cerevisiae, as a model system to investigate how transcription factors affect gene expression in response to nutrient signaling pathways. Paper I investigates the role of the three homologous transcription factors Mig1, Mig2 and Mig3 in regulating gene expression in response to glucose. This is done by transcriptional profiling with microarrays of wild type yeast, as well as mutant strains where the MIG1, MIG2 and MIG3 genes have been deleted in all possible combinations. The results reveal that Mig1 and Mig2 act together, with Mig1 having a larger effect in general while Mig2 has a role specialized for high-glucose conditions. Using a strategy similar to that in paper I, paper II examines the roles of the two homologous transcription factors Gis1 and Rph1 in gene regulation. This study shows that Gis1 and Rph1 are both involved in nutrient signaling, acting in parallel with a large degree of redundancy. Furthermore, we find that these two transcription factors change both target genes as well as the effects on transcription when the yeast cell transitions through different growth phases. Rph1 is a functional JmjC histone demethylase, and paper III investigates the connection between this activity and the transcriptional regulation studied in paper II. We find that rendering Rph1 catalytically inactive has little effect on its role in nutrient signaling and gene regulation, but subtly affects certain groups of genes. Paper IV reveals that Rph1 does not affect the chronological lifespan of yeast as does its homolog Gis1. However, deleting or overexpressing RPH1 has effects on the response to rapamycin and caffeine, inhibitors of the evolutionary conserved TORC1 complex affecting lifespan in both yeast and mammals.
5

The Regulation of NAP4 in Saccharomyces cerevisiae

Capps, Denise 20 May 2011 (has links)
The CCAAT binding-factor (CBF) is a transcriptional activator conserved in eukaryotes. The CBF in Saccharomyces cerevisiae is a multimeric heteromer termed the Hap2/3/4/5 complex. Hap4, which contains the activation domain of the complex, is also the regulatory subunit and is known to be transcriptionally controlled by carbon sources. However, little is known about Hap4 regulation. In this report, I identify mechanisms by which Hap4 is regulated, including: (1) transcriptional regulation via two short upstream open reading frames (uORFs) in the 5' leader sequence of HAP4 mRNA; (2) proteasome-dependent degradation of Hap4; and (3) identification of two negative regulators of HAP4 expression, CYC8 and SIN4. I also report differential patterns of Hap4 cellular localization which depends on (1) carbon sources, (2) abundance of Hap4 protein, and (3) presence or absence of mitochondrial DNA (mtDNA).
6

Räumliche und zeitliche Untersuchungen zum Teilungsapparat der äußeren Mitochondrienmembran mit hochauflösender Fluoreszenzmikroskopie / Spatial and temporal studies of the mitochondrial outer membran fission machinery using fluorescence microscopy with super resolution

Martini, Nadia 22 January 2004 (has links)
No description available.

Page generated in 0.1025 seconds