• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental and Analytical Studies of Semi-Active and Passive Structural Control of Buildings

Mulligan, Kerry Jane January 2007 (has links)
This thesis explores semi-active structural control methods for mitigating damage during seismic events. Semi-active devices offer the adaptability of active devices in conjunction with low power requirements and thus the reliability of passive devices. A number of structural applications utilising semi-active resetable devices in structural control are described and analysed. A distinguishing feature of this research is the novel design of a large-scale resetable device developed, manufactured and extensively tested. This design dramatically extends the capabilities of resetable devices by readily manipulating the device response to the structural demands and specific structural control requirements. In particular, the unique ability to use these devices to reshape or sculpt structural hysteretic behaviour offers significant new opportunities in semi-active structural control. The results indicate improvements in structural performance during seismic events is gained by approaches to structural control and enhanced damping methods that challenge conventional methods. Using an array of performance metrics the overall structural performance is examined without the typically narrow focus found in other studies. Suites of earthquake ground motion records are utilised to avoid bias to any particular type of motion and statistical analysis of the performance over these suites indicates the overall efficacy of the resetable devices in each case considered. A model that accurately captures all the device dynamics is developed, which can be used for a variety of device types and designs. In addition, the testing capabilities of structural control methods is enhanced by the development of a high speed, real-time hybrid test procedure providing a link between pure simulation and full-scale testing to increase confidence before investing in large experiments. Finally, the resetable devices are extended to improve the response force to size ratio, which additionally increases the force-displacement manipulation ability. Large-scale shake table experiments validate the findings of the analytical results. Very close correlation between analytical and experimental results including overall trends and numerical values verifies the analytical methods used and increases confidence in continuing research in this area. Furthermore, these large-scale experiments confirm the efficacy and accuracy of the the device model developed, leading to highly accurate quantitative prediction of the overall structural system response. Overall, this research presents a methodology for designing, testing and applying resetable devices in structural control. The devices developed in this research and the extensive modelling and testing dramatically extend the understanding and scope of these devices. Guidelines developed for these large-scale resetable device designs including a validated dynamic model brings the application of resetable devices closer to real structural control applications.
2

Semi-active smart-dampers and resetable actuators for multi-level seismic hazard mitigation of steel moment resisting frames

Hunt, Stephen J January 2002 (has links)
This thesis explores the creation and assessment of semi-active control algorithms for both squat shear buildings and tall flexible structures. If cost-effective, practicable, semi-active structural control systems can be developed, the potential reduction in loss of both property and lives due to seismic events is significant. Semi-active controllers offer many of the benefits of active systems, but have power requirements orders of magnitude smaller, and do not introduce energy to the structural system. Previous research into semi-active controllers has shown their potential in linear simulations with single earthquake excitations. The distinguishing feature of this investigation is the use of appropriate non-linear modelling techniques and realistic suites of seismic excitations in the statistical assessment of the semi-active control systems developed. Finite element time-history analysis techniques are used in the performance assessment of the control algorithms developed for three and nine story structural models. The models include non-linear effects due to structural plasticity, yielding, hysteretic behaviour, and P-delta effects. Realistic suites of earthquake records, representing seismic excitations with specific return period probability, are utilised, with lognormal statistical analysis used to represent the response distribution. In addition to displacement focused control laws, acceleration and jerk regulation control methods are developed, showing that potential damage reduction benefits can be obtained from these new control approaches. A statistical assessment of control architecture is developed and undertaken, examining the distribution of constant maximum actuator authority for both squat shear buildings, and tall slender structures, highlighting the need to consider non-linear structural response characteristics when implementing semi-active control systems. Finally, statistical analysis of all results and normalised values shows the efficacy of each control law and actuator type relative to different magnitude seismic events. As a result, this research clearly presents, for the first time, explicit tradeoffs between control law, architecture type, non-linear structural effects, and seismic input characteristics for the semi-active control of civil structures.
3

Passive and Semi-Active Tuned Mass Damper Building Systems.

Chey, Min Ho January 2007 (has links)
This thesis explores next generation passive and semi-active tuned mass damper (PTMD and SATMD) building systems for reducing the seismic response of tall structures and mitigating damage. The proposed structural configuration separates the upper storey(s) of a structure to act as the 'tuned' mass, either passively or semi-actively. In the view point of traditional TMD system theory, this alternative approach avoids adding excessive redundant mass that is rarely used. In particular, it is proposed to replace the passive spring damper system with a semi-active resetable device based system (SATMD). This semi-active approach uses feedback control to alter or manipulate the reaction forces, effectively re-tuning the system depending on the structural response. In this trade-off parametric study, the efficacy of spreading stiffness between resetable devices and rubber bearings is illustrated. Spectral analysis of simplified 2-DOF model explores the efficacy of these modified structural control systems and the general validity of the optimal derived parameters is demonstrated. The end result of the spectral analysis is an optimally-based initial design approach that fits into accepted design methods. Realistic suites of earthquake ground motion records, representing seismic excitations of specific return period probability, are utilised, with lognormal statistical analysis used to represent the response distribution. This probabilistic approach avoids bias toward any particular type of ground motion or frequency content. Statistical analysis of the performance over these suites thus better indicates the true overall efficacy of the PTMD and SATMD building systems considered. Several cases of the segregated multi-storey TMD building structures utilising passive devices (PTMD) and semi-active resetable devices (SATMD) are described and analysed. The SATMD building systems show significant promise for applications of structural control, particularly for cases where extra storeys might be added during retrofit, redevelopment or upgrade. The SATMD approach offers advantages over PTMD building systems in the consistent response reductions seen over a broad range of structural natural frequencies. Using an array of performance metrics the overall structural performance is examined without the typically narrow focus found in other studies. Performance comparisons are based on statistically calculated storey/structural hysteretic energy and storey/structural damage demands, as well as conventional structural response performance indices. Overall, this research presents a methodology for designing SATMD building systems, highlighting the adaptable structural configuration and the performance obtained. Thus, there is good potential for SATMD building systems, especially in retrofit where lack of space constrains some future urban development to expand upward. Finally, the approach presented offers an insight into how rethinking typical solutions with new technology can offer dramatic improvements that might not otherwise be expected or obtainable.

Page generated in 0.0297 seconds