21 |
Effects of sequential Campylobacter jejuni 81-176 lipooligosaccharide core truncations on stress survival and pathogenesisNaito, Mizue 11 1900 (has links)
Campylobacterjejuni, a Gram-negative enteric pathogen, is the leading cause of bacterial
gastroenteritis in the developed world. A C. jejuni strain 8 1-176 transposon library was used to
screen for mutants over-producing a calcofluor white (CFW)-reactive polymer implicated in
biofilm formation. This identified two lipooligosaccharide (LOS) core mutants: one defective
for a two-domain glycosyltransferase (lgtF), and the other defective in a heptosyltransferase
(waaF). To determine if other LOS core mutants displayed a similar phenotype, and to explore
other biological outcomes of step-wise LOS truncations on C. jejuni stress resistance and
pathogenesis, mutant strains defective for GaiT and CstII were also constructed. Silver stain and
mass spectrometry analyses confirmed the sequential truncation of sialic acid (ΔcstII), galactose
(ΔgalT), two glucoses (ΔlgtF), and heptose II (ΔwaaF). While the ΔlgtF and ΔwaaF mutants
exhibited enhanced biofilm formation and ΔlgtF displayed increased sensitivity to complement
killing, no effect for these phenotypes and only modest alterations in CFW reactivity were seen
with partial outer core truncations. Deletion of LgtF had no effect on mouse colonization in vivo,
or on invasion and intracellular survival in epithelial cells in vitro. In contrast, the ΔwaaF
mutant exhibited a significant defect in intracellular survival in vitro. Interestingly, the mutants
exhibited stepwise increases in susceptibility to the antimicrobial peptide LL-37, with /waaF
and ΔlgtF being more susceptible and ΔgalT and ΔstII being more resistant than wild type. In
contrast, all of the mutants were highly susceptible to polymyxin B. This is the first report of C.
jejuni susceptibility to LL-37 and of LOS affecting polymyxin B resistance. Each of these
appears to be independent of overt effects on outer membrane protein expression, membrane
stability, or surface hydrophobicity. Together, our data indicate that the length and specific
moieties of the LOS play important roles in C. jejuni biology, and suggest a dynamic interplay of
the LOS with other stress resistance factors.
|
22 |
Determination of pesticide residues on some commodities in the United Arab Emirates /Muhairi, Saeed M. Al. January 2001 (has links) (PDF)
Thesis (M. Phil.)--University of Queensland. / Includes bibliographical references.
|
23 |
A comparison of liquid and solid forms of nitrogen fertilizers for the decomposition of crop residuesFenn, Lloyd B. January 1963 (has links)
No description available.
|
24 |
The isolation and analysis of hemicelluloses and pectic materials from leaves of corn, Zea mays.Malan, Rodwick La Pur, 1916- January 1941 (has links)
No description available.
|
25 |
The isolation and analysis of the hemicelluloses obtained from the wood of the catclaw, Acacia greggii, before chlorinationKillen, Margaret Sofia, 1915- January 1941 (has links)
No description available.
|
26 |
The isolation and analysis of hemicelluloses from rind of corn stalks, Zea mays.Scott, Donald Albert, 1917- January 1941 (has links)
No description available.
|
27 |
Effects of sequential Campylobacter jejuni 81-176 lipooligosaccharide core truncations on stress survival and pathogenesisNaito, Mizue 11 1900 (has links)
Campylobacterjejuni, a Gram-negative enteric pathogen, is the leading cause of bacterial
gastroenteritis in the developed world. A C. jejuni strain 8 1-176 transposon library was used to
screen for mutants over-producing a calcofluor white (CFW)-reactive polymer implicated in
biofilm formation. This identified two lipooligosaccharide (LOS) core mutants: one defective
for a two-domain glycosyltransferase (lgtF), and the other defective in a heptosyltransferase
(waaF). To determine if other LOS core mutants displayed a similar phenotype, and to explore
other biological outcomes of step-wise LOS truncations on C. jejuni stress resistance and
pathogenesis, mutant strains defective for GaiT and CstII were also constructed. Silver stain and
mass spectrometry analyses confirmed the sequential truncation of sialic acid (ΔcstII), galactose
(ΔgalT), two glucoses (ΔlgtF), and heptose II (ΔwaaF). While the ΔlgtF and ΔwaaF mutants
exhibited enhanced biofilm formation and ΔlgtF displayed increased sensitivity to complement
killing, no effect for these phenotypes and only modest alterations in CFW reactivity were seen
with partial outer core truncations. Deletion of LgtF had no effect on mouse colonization in vivo,
or on invasion and intracellular survival in epithelial cells in vitro. In contrast, the ΔwaaF
mutant exhibited a significant defect in intracellular survival in vitro. Interestingly, the mutants
exhibited stepwise increases in susceptibility to the antimicrobial peptide LL-37, with /waaF
and ΔlgtF being more susceptible and ΔgalT and ΔstII being more resistant than wild type. In
contrast, all of the mutants were highly susceptible to polymyxin B. This is the first report of C.
jejuni susceptibility to LL-37 and of LOS affecting polymyxin B resistance. Each of these
appears to be independent of overt effects on outer membrane protein expression, membrane
stability, or surface hydrophobicity. Together, our data indicate that the length and specific
moieties of the LOS play important roles in C. jejuni biology, and suggest a dynamic interplay of
the LOS with other stress resistance factors.
|
28 |
The use of steam treatment to upgrade lignocellulosic materials for animal feedCastro, Fernando Basile de January 1994 (has links)
Lignocellulosics (LC) are the most abundant and under-utilised renewable resource of energy in the world. The present study is concerned with finding alternative uses to LC as an animal feed using environmentally friendly technologies. The major biological constraint for using LC is related to the low accessibility of cell wall polysaccharides to both cell-free and microbial enzymes. This can only be overcome by some type of processing. This study emphasises the use of physical (steam) and biological (enzymic) treatments. Results have shown that both low (LT) and high temperature steam treatment (HT) are efficient methods for solubilising hemicellulosic sugars and depolymerising lignin. However, HT leads to higher losses of both sugar and dry matter. Higher improvement in fibre bio-availability was obtained with HT and yet, this effect was more evident from enzymic hydrolysis data compared to rumen fermentation. LT can be used for upgrading LC since exogenous chemicals are added. HT showed to be an attractive alternative for producing animal feed and substrate for enzymic saccharification without requiring chemicals. The effects of steam treatment on fibre physical structure were particularly important. Greater effect was noticed under HT in combination with rapid decompression. It was suggested that rapid decompression should be avoided in the context of animal feeding. Experiments on toxic compounds indicated that furans have negligible toxicity to rumen micro-organisms. Phenolic compounds, however, are potentially toxic and can affect the pattern of rumen fermentation, gas production and adhesion of bacteria to substrate.
|
29 |
Chemical and physical changes associated with maturity of different plants and enhancement of nutritional value by chemical treatment of crop residues /Naseer, Zarga, January 1990 (has links)
Thesis (Ph. D.)--Virginia Polytechnic Institute and State University, 1990. / Vita. Abstract. Includes bibliographical references (leaves 197-227). Also available via the Internet.
|
30 |
Effect of processing parameters on the detection of animal drug residues in milk /Conner, Tonya Michele, January 1992 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1992. / Vita. Abstract. Includes bibliographical references (leaves 41-49). Also available via the Internet.
|
Page generated in 0.0337 seconds