• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimized information processing in resource-constrained vision systems. From low-complexity coding to smart sensor networks

MORBEE, MARLEEN 14 October 2011 (has links)
Vision systems have become ubiquitous. They are used for traffic monitoring, elderly care, video conferencing, virtual reality, surveillance, smart rooms, home automation, sport games analysis, industrial safety, medical care etc. In most vision systems, the data coming from the visual sensor(s) is processed before transmission in order to save communication bandwidth or achieve higher frame rates. The type of data processing needs to be chosen carefully depending on the targeted application, and taking into account the available memory, computational power, energy resources and bandwidth constraints. In this dissertation, we investigate how a vision system should be built under practical constraints. First, this system should be intelligent, such that the right data is extracted from the video source. Second, when processing video data this intelligent vision system should know its own practical limitations, and should try to achieve the best possible output result that lies within its capabilities. We study and improve a wide range of vision systems for a variety of applications, which go together with different types of constraints. First, we present a modulo-PCM-based coding algorithm for applications that demand very low complexity coding and need to preserve some of the advantageous properties of PCM coding (direct processing, random access, rate scalability). Our modulo-PCM coding scheme combines three well-known, simple, source coding strategies: PCM, binning, and interpolative coding. The encoder first analyzes the signal statistics in a very simple way. Then, based on these signal statistics, the encoder simply discards a number of bits of each image sample. The modulo-PCM decoder recovers the removed bits of each sample by using its received bits and side information which is generated by interpolating previous decoded signals. Our algorithm is especially appropriate for image coding. / Morbee, M. (2011). Optimized information processing in resource-constrained vision systems. From low-complexity coding to smart sensor networks [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/12126
2

Sign of the Times : Unmasking Deep Learning for Time Series Anomaly Detection / Skyltarna på Tiden : Avslöjande av djupinlärning för detektering av anomalier i tidsserier

Richards Ravi Arputharaj, Daniel January 2023 (has links)
Time series anomaly detection has been a longstanding area of research with applications across various domains. In recent years, there has been a surge of interest in applying deep learning models to this problem domain. This thesis presents a critical examination of the efficacy of deep learning models in comparison to classical approaches for time series anomaly detection. Contrary to the widespread belief in the superiority of deep learning models, our research findings suggest that their performance may be misleading and the progress illusory. Through rigorous experimentation and evaluation, we reveal that classical models outperform deep learning counterparts in various scenarios, challenging the prevailing assumptions. In addition to model performance, our study delves into the intricacies of evaluation metrics commonly employed in time series anomaly detection. We uncover how it inadvertently inflates the performance scores of models, potentially leading to misleading conclusions. By identifying and addressing these issues, our research contributes to providing valuable insights for researchers, practitioners, and decision-makers in the field of time series anomaly detection, encouraging a critical reevaluation of the role of deep learning models and the metrics used to assess their performance. / Tidsperiods avvikelsedetektering har varit ett långvarigt forskningsområde med tillämpningar inom olika områden. Under de senaste åren har det uppstått ett ökat intresse för att tillämpa djupinlärningsmodeller på detta problemområde. Denna avhandling presenterar en kritisk granskning av djupinlärningsmodellers effektivitet jämfört med klassiska metoder för tidsperiods avvikelsedetektering. I motsats till den allmänna övertygelsen om överlägsenheten hos djupinlärningsmodeller tyder våra forskningsresultat på att deras prestanda kan vara vilseledande och framsteg illusoriskt. Genom rigorös experimentell utvärdering avslöjar vi att klassiska modeller överträffar djupinlärningsalternativ i olika scenarier och därmed utmanar de rådande antagandena. Utöver modellprestanda går vår studie in på detaljerna kring utvärderings-metoder som oftast används inom tidsperiods avvikelsedetektering. Vi avslöjar hur dessa oavsiktligt överdriver modellernas prestandapoäng och kan därmed leda till vilseledande slutsatser. Genom att identifiera och åtgärda dessa problem bidrar vår forskning till att erbjuda värdefulla insikter för forskare, praktiker och beslutsfattare inom området tidsperiods avvikelsedetektering, och uppmanar till en kritisk omvärdering av djupinlärningsmodellers roll och de metoder som används för att bedöma deras prestanda.

Page generated in 0.0741 seconds