• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fed-batch growth of Rhizopus oryzae : eliminating ethanol formation by controlling glucose addition

De Jongh, Nicolaas Willem 05 1900 (has links)
Rhizopus oryzae is a prominent strain for producing fumarate, where biomass growth precedes fumarate production. The natural bio film growth of R. oryzae as fungal mat was investigated using different glucose addition strategies in a novel fed-batch fermenter. Batch growth was compared through three fed-batch runs, each with a different glucose addition strategy. The fed-batch runs involved a constant glucose feed (CGF) of 0.075 g h-1 and controlled glucose feeds in order to keep the respiration quotient (RQ) at either 1.3 mol CO2 mol-1 O2 (RQ1.3) or 1.1 mol CO2 mol-1 O2 (RQ1.1). Ethanol overflow via the established Crabtree mechanism was completely negated for the CGF and RQ1.1 runs, while the batch and RQ1.3 runs exhibited significant ethanol formation. Biomass yield on glucose was found to be 0.476 g g-1 (RQ1.1), 0.194 g g-1 (RQ1.3), 0.125 g g-1 (CGF) and 0.144 g g-1 (batch). The results indicate a three-fold improvement in biomass yield when comparing the batch run with the RQ1.1 run. In addition, the RQ1.1 run resulted in zero detectable byproducts, unlike the batch scenario where pyruvate and fumarate were associated with ethanol formation. Clear evidence is provided that glucose overflow can be fully eliminated during R. oryzae growth, significantly affecting the biomass yield on glucose. / Dissertation (MEng (Chemical Engineering))--University of Pretoria, 2021. / University of Pretoria postgraduate bursary / CSIR Inter-bursary Programme / Chemical Engineering / MEng (Chemical Engineering) / Unrestricted

Page generated in 0.1181 seconds