• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The physiology of industrial yeast in continuous culture

Wardrop, Forbes Robert January 1999 (has links)
The growth and physiology of <i>Saccharomyces cerevisiae</i> GB4918 (baker’s yeast) was studied under glucose-limitation in chemostat culture. Levels of lg/1 (0.1% w /v) glucose allowed cell growth while preventing fermentation in a defined medium (QEMM3). Metabolism of glucose by respiration or fermentation was shown to affect the mean cell volume, with fermentative use of glucose causing an increase in cell size. This was also a major physiological difference between <i>S. cerevisiae </i>GB4918 (a Crabtree positive yeast) and <i>Kliiyveromyces marxianus</i> DBVPG 6165 (a Crabtree negative yeast). The ability of the Crabtree positive yeast to substantially increase its mean cell volume was also reflected in a 5-fold greater consumption of glucose, reduced biomass yield and increased ethanol yield, compared with the Crabtree negative <i>K . marxianus</i>. Growth of both these yeasts was seen in 50g/l glucose in the presence of the respiratory inhibitor, antimycin A. This was evident by the switching to fermentation in <i>K . marxianus</i>, and the complete fermentation of glucose by <i>S. cerevisiae</i>. The growth and physiology of <i>S. cerevisiae</i> GB4918 was also established in glucose-limited chemostat cultures, with special regard to the intracellular macromolecular compounds that are relevant to industrial yeast biomass production. This showed that in respiring cultures of <i>S. cerevisiae</i>, increasing growth rate resulted in decrease in both trehalose and glycogen content, while increasing protein and RNA. This is true until μ<sub>max</sub> (in this context the growth rate at which respiro-fermentativemetabolism occurs) when accumulation of trehalose and glycogen is apparent. Once μ<sub>erit</sub> (growth rate at which washout of the culture begins) was reached then biomass significantly reduced. In describing the steady-state condition of baker’s yeast it was then possible to describe changes occurring in yeast when subjected to a variety of nutrient perturbations. With a lactic acid (2% v/v) perturbation there were dramatic effects on both growth and metabolism at a growth rate of 0.12h_1, but significant decreases in biomass and protein, and significant increases in trehalose and glycogen. At a higher growth rate (0.22h_1) the effect was much severer on protein content, and on reduced levels of trehalose and glycogen. The effect of perturbing the cultures with elevated levels of calcium was also most significant on reducing yeast trehalose and glycogen levels, probably due to inhibition of the biosynthesis of these compounds. Zinc additions to chemostat cultures acted to increase the levels of protein in the cells,while having little effect on any of the other cellular macromolecules. This suggests that increasing calcium levels during the latter stages of yeast propagations may produce a yeast with reduced stress responses. Increased zinc may also encourage a greater protein content, which would, in turn, provide a better nutritive content for both protein and amino acids in yeasts destined for use as a food additive.
2

Impact du dioxyde de carbone sur la levure Saccharomyces cerevisiae : caractérisation du transfert liquide/gaz et implications sur les métabolismes énergétiques / Carbon dioxide impact on Saccharomyces cerevisiae : study of the liquid/gas masstransfer and consequences on the energetics

Richard, Lannig 12 December 2014 (has links)
L’objectif de ce travail est l’étude de l’impact du dioxyde de carbone (CO2) sur la physiologie et le métabolisme de la levure Saccharomyces cerevisiae, en particulier son impact sur le catabolisme oxydatif du glucose et son rôle dans le déclenchement de la transition respiro-fermentaire. Le CO2 est au coeur des interactions entre phénomènes biologiques et phénomènes physiques de transfert existant au sein d’un réacteur biologique. La compréhension de son impact sur la physiologie de la levure nécessite la connaissance de sa concentration en phase liquide et donc la maitrise des phénomènes de transfert interphasiques.Le transfert liquide / gaz du CO2 en fermenteur a été étudié par une approche couplant modélisation et expérimentation avec un effort particulier sur l’analyse intégrée des phénomènes biologiques et de transfert. En comparaison avec les hypothèses de transfert généralement admises une sursaturation du moût en CO2 dissous dans le moût a été observée lors de cultures de S.cerevisiae et attribuée à l‘existence d’une distribution asymétrique de tailles de bulles de la phase dispersée. Il a été démontré que le transfert liquide / gaz du CO2 lors d’une culture microbienne intensive ne peut être décrit par analogie avec le transfert gaz / liquide de l’oxygène et que la connaissance de la concentration en CO2 dissous ne peut être réalisée que par sa mesure directe.L’impact du CO2 sur le métabolisme oxydatif de la levure a été investigué par le suivi de la réponse dynamique de la réponse à différents incréments mesurés de la concentration en CO2 dissous en culture continue. Cette réponse est constituée d’une réponse transitoire et intense et d’une réponse à long-terme plus modérée Elle se caractérise par l’impact du CO2 sur l’énergétique cellulaire en augmentant la génération et la dissipation d’énergie ce qui est traduit à court-terme par une augmentation transitoire de +24 à +37 % des vitesses spécifiques de respiration lors d’échelons de la concentration en CO2 dissous de +2.96 et +5.29 mM et à long-terme par une diminution de 18% YATP de % lorsque la concentration en CO2 dissous augmente de 1.6 mM à 17 mM. L’effet du CO2 sur la transition respiro-fermentaire a été étudié en culture de type accélérostat en présence d’une concentration élevée en CO2 dissous. Dans ces conditions, la bascule vers le métabolisme réductif est obtenue pour un taux de croissance (0.122 h-1) et des vitesses spécifiques de respiration (5.2 mmoleO2.gX-1.h-1) inférieurs aux valeurs obtenues avec un accélérostat sans apport exogène de CO2 (0.256h-1 et 8.65 mmoleO2.gX-1.h-1) respectivement. Cette modification du métabolisme n’a pu être corrélée directement à un déficit de potentiel énergétique oxydatif et semble probablement liée à une perte de flexibilité d’adaptation à la dynamique de variation de l’environnement. / The aim of this work was to evaluate the impact of carbon dioxide (CO2) on the physiology of the yeast Saccharomyces cerevisiae, more precisely on the oxidative metabolism and on the onset of alcoholic fermentation. CO2 is involved in the interactions between transfer phenomena and biological phenomena in fermenters. The knowledge of the dissolved CO2 concentration and then of the CO2 liquid / gas mass transfer phenomena is required to assess the impact of this compound on the yeast physiology.Investigation of CO2 liquid / gas in biological reactors has been carried out using simulations and experiments taking into consideration both biological and transfer phenomena. CO2 supersaturation was observed in an intensive fed-batch culture of S.cerevisiae and may be caused by an asymmetric bubble size distribution of the gas phase. We demonstrated that CO2 liquid / gas transfer cannot be described based on O2 gas / liquid transfer and that CO2 concentration must be estimated through direct measurement.The impact of CO2 on the oxidative metabolism of S.cerevisiae was investigated using chemostat cultures submitted to different step-increases of the dissolved CO2 concentrations with direct measurement of the dissolved CO2 concentration. The yeast culture showed a transient response with an increase of the specific respiration rates ranging from with a +24 to +37 % during + 2.96 mM and+5.29 mM dissolved CO2 step-increases. This transient response was followed by a long-term response characterized by a decrease of the YATP value with increasing dissolved CO2 concentrations (down to -18% when the CO2 concentration increased from 1.6 mM to 17 mM).The impact of CO2 on the onset of the Crabtree effect in S.cerevisiae was investigated using the accelerostat technique with and without CO2 enrichment. The onset of alcoholic fermentation occurred at a much lower specific growth rate (0.122 h-1) and specific oxygen consumption rate (5.2 mmoleO2.gX-1.h-1) in CO2 enriched conditions than without CO2 enrichment (0.256h-1 and 8.65 mmoleO2.gX-1.h-1 respectively). These modifications may be linked with a decreased cellular adaptability to changing environment
3

Fed-batch growth of Rhizopus oryzae : eliminating ethanol formation by controlling glucose addition

De Jongh, Nicolaas Willem 05 1900 (has links)
Rhizopus oryzae is a prominent strain for producing fumarate, where biomass growth precedes fumarate production. The natural bio film growth of R. oryzae as fungal mat was investigated using different glucose addition strategies in a novel fed-batch fermenter. Batch growth was compared through three fed-batch runs, each with a different glucose addition strategy. The fed-batch runs involved a constant glucose feed (CGF) of 0.075 g h-1 and controlled glucose feeds in order to keep the respiration quotient (RQ) at either 1.3 mol CO2 mol-1 O2 (RQ1.3) or 1.1 mol CO2 mol-1 O2 (RQ1.1). Ethanol overflow via the established Crabtree mechanism was completely negated for the CGF and RQ1.1 runs, while the batch and RQ1.3 runs exhibited significant ethanol formation. Biomass yield on glucose was found to be 0.476 g g-1 (RQ1.1), 0.194 g g-1 (RQ1.3), 0.125 g g-1 (CGF) and 0.144 g g-1 (batch). The results indicate a three-fold improvement in biomass yield when comparing the batch run with the RQ1.1 run. In addition, the RQ1.1 run resulted in zero detectable byproducts, unlike the batch scenario where pyruvate and fumarate were associated with ethanol formation. Clear evidence is provided that glucose overflow can be fully eliminated during R. oryzae growth, significantly affecting the biomass yield on glucose. / Dissertation (MEng (Chemical Engineering))--University of Pretoria, 2021. / University of Pretoria postgraduate bursary / CSIR Inter-bursary Programme / Chemical Engineering / MEng (Chemical Engineering) / Unrestricted
4

Modulation par approches microbiologique et génétique de la synthèse d'acide acétique lors de la production d'éthanol sous métabolisme oxydo-réductif chez Saccharomyces cerevisiae / Modulation by microbiological and genetical approaches of the synthesis of acetic acid during the production of ethanol under oxido-reductive metabolism in Saccharomyces cerevisiae

Marc, Jillian 26 September 2013 (has links)
L’objectif de ces travaux de thèse était de rechercher un potentiel effet inhibiteur de l’acide acétique endogène sur le métabolisme oxydo réductif de Saccharomyces cerevisiae, afin d’évaluer la pertinence d’une stratégie d’amélioration des capacités de production d’éthanol par la modulation de la synthèse de cet acide. Ces travaux devaient également permettre d’approfondir la compréhension des principaux facteurs commandant la synthèse de l’acide acétique et plus largement des acides organiques. La stratégie de modulation de la synthèse d’acide acétique mise en place reposait sur des approches microbiologique et génétique, consistant en l’ajout d’acide oléique et / ou de carnitine dans le milieu de culture ainsi que la surexpression du gène CIT2 ou la suppression du gène ALD6.Cette démarche a permis de montrer que, contrairement à la version exogène, l’acide acétique endogène ne présentait pas d’effet inhibiteur du métabolisme oxydo réductif de Saccharomyces cerevisiae ou qu’il était négligeable par rapport au stress éthanol. En outre, la modulation de la production de cet acide ne semble pas être une stratégie envisageable en vue de l’amélioration des capacités de production d’éthanol de cette levure, bien qu’une corrélation ait été observée entre les titres finaux de ces deux molécules.En outre, il a été montré que l’isoforme 6 de l’acétaldéhyde déshydrogénase (Ald6p) était essentiel pour assurer la croissance cellulaire normale ainsi que les mécanismes de résistance au stress éthanol dans ces conditions de culture. Plus largement, l’interrelation entre les différents isoformes ne paraissait pas aussi flexible qu’en anaérobiose. Saccharomyces cerevisiae semblait également présenter un métabolisme flexible en réponse à une modulation de la synthèse d’acide acétique. La voie des pentoses phosphates serait ainsi capable de prendre le relais de l’Ald6p pour assurer la régénération du NADPH cytosolique, bien que le flux à travers cette voie semble avoir été limité par le ratio NADP+ / NADPH. Enfin, les cellules paraissaient capables de réguler la synthèse de l’acétyl coA à partir d’acide acétique en réaction à une évolution des besoins anaboliques lors de la fin de la phase de croissance. Elles seraient toutefois incapables de pallier le manque d’acétyl coA suite à la suppression du gène ALD6. La modulation de la synthèse des acides pyruvique et succinique a également fait l’objet de discussions. / The aim of this work was to investigate a potential inhibitory effect of endogenous acetic acid on the oxido-reductive metabolism of Saccharomyces cerevisiae, to assess the relevance of a strategy based of the modulation of the synthesis of this acid, to improve ethanol production capacities. This work should also help to broaden the understanding of the main factors controlling the synthesis of acetic acid, and more generally organic acids. The strategy to modulate the synthesis of acetic acid was based on microbiological and genetic approaches, consisting in the addition of oleic acid and / or carnitine in the medium as well as the overexpression of the gene CIT2 or the deletion of the gene ALD6.This approach has shown that, contrary to exogenous version, endogenous acetic acid did not induce inhibitory effects on the oxido-reductive metabolism of Saccharomyces cerevisiae, or was negligible compared to stress caused by ethanol. Moreover, the modulation of the synthesis of this acid appear to be not an attractive strategy to improve ethanol production capacities of the yeast, although a correlation was observed between the end-culture titer of these two molecules.In addition, it has been shown that the isoform 6 of acetaldehyde dehydrogenase (Ald6p) was essential to ensure regular growth and mechanisms of ethanol stress resistance under these conditions of culture. More broadly, the interrelation between the different isoforms did not seem as flexible as under anaerobic conditions. Saccharomyces cerevisiae also seemed to have a flexible metabolism in response to a modulation of the synthesis of acetic acid. The pentose-phosphate way would be able to take over from Ald6p for regeneration of cytosolic NADPH, although the ratio NADP+ / NADPH seemed to lessen the flux through this pathway. Finally, the cells appeared to be able to regulate the synthesis of acetyl-CoA from acetic acid in response to changing in anabolic needs at the end of the growth phase. However, yeasts would be unable to overcome the lack of acetyl-CoA following the suppression of the gene ALD6. The modulation of the synthesis of pyruvic and succinic acids has also been discussed.
5

Étude de l’effet Warburg, à l’origine du métabolisme énergétique de la cellule cancéreuse, chez la levure Saccharomyces cerevisiae / Study of the Warburg effect, on the origin of the energy metabolism of the cancer cell, in yeast Saccharomyces cerevisiae

Hammad, Noureddine 03 December 2018 (has links)
Nous avons étudié les relations entre les différentes voies du métabolisme énergétique lors de la mise en place des effets Crabtree et Warburg. L’effet du glucose sur le métabolisme énergétique de S. cerevisiae se traduit dans un premier temps par une inhibition cinétique du métabolisme oxydatif (effet Crabtree). Après l’ajout de glucose aux cellules, nous avons mis en évidence l’accumulation d’un intermédiaire de la glycolyse, le F1,6bP. Ceci induit une diminution drastique du rapport G6P/F1,6bP. Or, il a été montré que le G6P stimule et le F1,6bP inhibe l’activité de la chaine respiratoire mitochondriale « in-situ ». L’utilisation de mutants et la modulation de ce rapport nous a permis de montrer que l’induction de l’effet Crabtree chez la levure Saccharomyces cerevisiae est dû à une diminution du rapport G6P/F1,6bP. Parallèlement, le glucose induit un réarrangement génétique qui à terme conduit à un effet Warburg. Nous avons mis en évidence une diminution, au cours du temps du contenu mitochondrial par effet de dilution, suite à un arrêt de la biogenèse mitochondriale (répression de HAP4). Nous avons pu montrer que cette diminution quantitative des OXPHOS est sans effet sur la synthèse d’ATP cellulaire. Ceci est dû à une augmentation du flux de synthèse d’ATP glycolytique. L’utilisation de mutants HAP4", nous a permis de montrer qu’il n’y a pas de lien simple entre prolifération et répression des OXPHOS. Bien que le flux glycolytique diminue dans les conditions de maintien des OXPHOS, ceci est sans effet notoire sur la vitesse de prolifération. Ceci est un rare exemple d’une situation biologique ou l’on observe un découplage entre métabolisme énergétique et prolifération. / We used the yeast Crabtree (+) model to study the relationships between the energy metabolism pathways during the implementation of the Warburg effect. The effect of glucose on S. cerevisiae energetic metabolism results initially in a kinetic inhibition of the oxidative metabolism (Crabtree effect). Rapidly after the addition of glucose, we found an accumulation of F1, 6bP. This induces a drastic reduction in the ratio G6P / F1,6bP. Moreover, it has been shown that G6P stimulates and F1,6bP inhibits the activity of the respiratory chain "in-vitro". Mutants and the modulation of this ratio allowed us to show that the induction of the Crabtree effect is due to a decrease in the G6P / F1,6bP ratio. In parallel with the implementation of the Crabtree effect, glucose induces a genetic rearrangement that leads to a Warburg effect. We showed a decrease over time of mitochondrial enzymatic equipment by dilution effect, due to a halt of mitochondrial biogenesis (transcriptional repression of HAP4). We have been able to show that this decrease in respiratory capacity has no effect on the cellular capacity for ATP synthesis. This is due to the increase in glycolytic ATP synthesis flux. Furthermore, the use of mutants where there is no repression of mitochondrial metabolism upon glucose addition allowed us to show that there is no simple link between OXPHOS activity and cell proliferation. i.e. Mitochondrial metabolism repression/high glycolytic flux is not mandatory to allow a rapid cell proliferation. This is a rare example where energetic metabolism and cell proliferation are uncoupled.

Page generated in 0.0265 seconds