1 |
Prompt-learning and Zero-shot Text Classification with Domain-specific Textual DataLuo, Hengyu January 2023 (has links)
The rapid growth of textual data in the digital age presents unique challenges in domain-specific text classification, particularly the scarcity of labeled data for many applications, due to expensive cost of manual labeling work. In this thesis, we explore the applicability of prompt-learning method, which is well-known for being suitable in few-shot scenarios and much less data-consuming, as an emerging alternative to traditional fine-tuning methods, for domain-specific text classification in the context of customer-agent interactions in the retail sector. Specifically, we implemented the entire prompt-learning pipeline for the classification task, and, our investigation encompasses various strategies of prompt-learning, including fixed-prompt language model tuning strategy and tuning-free prompting strategy, along with an examination of language model selection, few-shot sampling strategy, prompt template design, and verbalizer design. In this manner, we assessed the overall performance of the prompt-learning method in the classification task. Through a systematic evaluation, we demonstrate that with the fixed-prompt language model tuning strategy, based on relatively smaller language models (e.g. T5-base with around 220M parameters), prompt-learning can achieve competitive performance (close to 75% accuracy) even with limited labeled data (up to merely 15% of full data). And besides, with the tuning-free prompting strategy, based on a regular-size language model (e.g. FLAN-T5-large with around 770M parameters), the performance can be up to around 30% accuracy with detailed prompt templates and zero-shot setting (no extra training data involved). These results can offer valuable insights for researchers and practitioners working with domain-specific textual data, prompt-learning and few-shot / zero-shot learning. The findings of this thesis highlight the potential of prompt-learning as a practical solution for classification problems across diverse domains and set the stage for future research in this area.
|
Page generated in 0.0665 seconds