1 |
Optimisation des outils de micro-fraisage destinés à l'usinage des aciers durs : cas des micro-fraises hémisphériques / Optimization of micro-milling tools for machining hard steels : case of micro ball-end millingEscolle, Bérenger 16 December 2015 (has links)
L’objectif de ces travaux de thèse est l’optimisation par une approche expérimentale d’un modèle de micro-fraise hémisphérique en carbure de tungstène revêtu, de diamètre 0,5 mm, destiné à l’usinage des aciers durs. Les données expérimentales obtenues résultent donc de l’usinage d’un acier 40NiCrMo16 à l’état trempé (54 HRC). Les résultats permettent de mettre en évidence certains phénomènes de coupe, d’usure et de comportement dynamique de l’outil liés au procédé, et leur évolution en fonction du type de fraise considéré et des conditions de coupe choisies. La géométrie de l’outil et son comportement dynamique sont ici principalement commentés. Dans un premier temps, l’étude de différentes nuances de carbure, préparation de surface ainsi que l’optimisation des géométries globale et locale des micro-fraises a permis de proposer un modèle optimisé pour notre partenaire outilleur Magafor. Dans un second temps, une approche numérique du micro-fraisage a été utilisée. Un premier modèle de calcul analytique des efforts de coupe a été testé et il a été mis en évidence les limites d’identification des coefficients spécifiques de coupe dans notre cas. Ensuite, une modélisation numérique par éléments finis du micro-fraisage a été réalisée afin d’appréhender l’étude du comportement dynamique des micro-fraises en fonction de la géométrie globale de l’outil développé. / The aim of this PhD work is optimized by experimental approach with 0.5 mm diameter micro-ball-end mills made from micro-grain tungsten carbide and PVD coated for hardened tool steels machining. The experimental data are obtained on machining of hardened steel (54/55HRC), typically used for the production of plastic injection molds. Results permit to highlight some cutting phenomena of wear and dynamic behavior of the process related tool, and changes depending on the type of milling considered and selected cutting conditions. The geometry of the tool and dynamic behavior are primarily discussed here. As a first step, the study of different carbide grades, surface preparation and optimization of global and local geometries of micro-cutters helped provide an efficient model for our partner Magafor toolmaker. In a second step, the modelling of micro-milling is discussed and an analytical model for cutting forces calculation is introduced. It was demonstrated the identifying limits of the specific cutting coefficients in our case. Then, a test of finite element modelling of micro-milling is made in order to estimate the potential of such a method for the study of the dynamic behaviour of micro-mills.
|
Page generated in 0.0852 seconds